Hamiltonian mechanical systems and geometric quantization:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Dordrecht u.a.
Kluwer Acad. Publ.
1993
|
Schriftenreihe: | Mathematics and its applications
260 |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | VIII, 278 S. graph. Darst. |
ISBN: | 0792323068 |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV008185872 | ||
003 | DE-604 | ||
005 | 20150825 | ||
007 | t | ||
008 | 930826s1993 d||| |||| 00||| engod | ||
020 | |a 0792323068 |9 0-7923-2306-8 | ||
035 | |a (OCoLC)246724640 | ||
035 | |a (DE-599)BVBBV008185872 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-19 |a DE-11 |a DE-188 |a DE-91G | ||
050 | 0 | |a QA614.83 | |
082 | 0 | |a 514.74 | |
084 | |a SK 350 |0 (DE-625)143233: |2 rvk | ||
084 | |a PHY 022f |2 stub | ||
100 | 1 | |a Puta, Mircea |e Verfasser |4 aut | |
245 | 1 | 0 | |a Hamiltonian mechanical systems and geometric quantization |c by Mircea Puta |
264 | 1 | |a Dordrecht u.a. |b Kluwer Acad. Publ. |c 1993 | |
300 | |a VIII, 278 S. |b graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Mathematics and its applications |v 260 | |
650 | 4 | |a Hamiltonian systems | |
650 | 4 | |a Poisson manifolds | |
650 | 4 | |a Symplectic manifolds | |
650 | 0 | 7 | |a Geometrische Quantisierung |0 (DE-588)4156720-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Hamiltonsches System |0 (DE-588)4139943-2 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Hamiltonsches System |0 (DE-588)4139943-2 |D s |
689 | 0 | 1 | |a Geometrische Quantisierung |0 (DE-588)4156720-1 |D s |
689 | 0 | |5 DE-604 | |
830 | 0 | |a Mathematics and its applications |v 260 |w (DE-604)BV008163334 |9 260 | |
856 | 4 | 2 | |m HBZ Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=005402678&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
940 | 1 | |n oe | |
999 | |a oai:aleph.bib-bvb.de:BVB01-005402678 |
Datensatz im Suchindex
_version_ | 1804122571294113792 |
---|---|
adam_text | Contents
Introduction vii
Background Notation viii
Chapter 1
Symplectic Geometry
1.1 Symplectic Algebra 1
1.2 Symplectic Geometry 7
1.3 Darboux s Theorem 12
1.4 Symplectic Reduction 14
1.5 Problems and Solutions 20
Chapter 2
Hamiltonian Mechanics
2.1 Hamiltonian Mechanical Systems 28
2.2 Poisson Bracket 35
2.3 Infinite Dimensional Hamiltonian
Mechanical Systems 41
2.4 Problems and Solutions 44
Chapter 3
Lie Groups. Momentum Mappings. Reduction
3.1 Lie Groups 52
3.2 Actions of Lie Groups 62
3.3 The Momentum Mapping 67
3.4 Reduction of Symplectic Manifolds 72
3.5 Problems and Solutions 84
Chapter 4
Hamilton Poisson Mechanics
4.1 Poisson Geometry 96
4.2 The Lie Poisson Structure 100
4.3 Hamilton Poisson Mechanical Systems 106
4.4 Reduction of Poisson Manifolds 113
4.5 Problems and Solutions 116
Chapter 5
Hamiltonian Mechanical Systems and Stability
5.1 The Meaning of Stability 134
5.2 Hamilton s Equations and Stability 137
5.3 The Energy Casimir Method 138
5.4 Problems and Solutions 149
vi CONTENTS
Chapter 6
Geometric Prequantization
6.1 Full Quantization and Dirac Problem 157
6.2 Complex Bundles and the Dirac Problem 159
6.3 Geometric Prequantization 163
6.4 Problems and Solutions 168
Chapter 7
Geometric Quantization
7.1 Polarizations and the First
Attempts to Quantization 183
7.2 Half Forms Correction
of Geometric Quantization 193
7.3 The Non Existence Problem 198
7.4 Problems and Solutions 199
Chapter 8
Foliated Cohomology and Geometric Quantization
8.1 Real Foliations and Differential Forms 207
8.2 Complex Foliations and Differential Forms 210
8.3 Complex Elliptic Foliations and Spectral Geometry 213
8.4 Cohomological Correction of Geometric Quantization 221
8.5 Problems and Solutions 224
Chapter 9
Symplectic Reduction. Geometric Quantization.
Constrained Mechanical Systems
9.1 Symplectic Reduction and Geometric
Prequantization 236
9.2 Symplectic Reduction and Geometric
Quantization 239
9.3 Applications to Constrained
Mechanical Systems 240
9.4 Problems and Solutions 244
Chapter 10
Poisson Manifolds and Geometric Prequantization
10.1 Groupoids 250
10.2 Symplectic Groupoids 252
10.3 Geometric Prequantization of
Poisson Manifolds 255
10.4 Problems and Solutions 257
References 262
Index 274
|
any_adam_object | 1 |
author | Puta, Mircea |
author_facet | Puta, Mircea |
author_role | aut |
author_sort | Puta, Mircea |
author_variant | m p mp |
building | Verbundindex |
bvnumber | BV008185872 |
callnumber-first | Q - Science |
callnumber-label | QA614 |
callnumber-raw | QA614.83 |
callnumber-search | QA614.83 |
callnumber-sort | QA 3614.83 |
callnumber-subject | QA - Mathematics |
classification_rvk | SK 350 |
classification_tum | PHY 022f |
ctrlnum | (OCoLC)246724640 (DE-599)BVBBV008185872 |
dewey-full | 514.74 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 514 - Topology |
dewey-raw | 514.74 |
dewey-search | 514.74 |
dewey-sort | 3514.74 |
dewey-tens | 510 - Mathematics |
discipline | Physik Mathematik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01691nam a2200445 cb4500</leader><controlfield tag="001">BV008185872</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20150825 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">930826s1993 d||| |||| 00||| engod</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0792323068</subfield><subfield code="9">0-7923-2306-8</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)246724640</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV008185872</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-11</subfield><subfield code="a">DE-188</subfield><subfield code="a">DE-91G</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA614.83</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">514.74</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 350</subfield><subfield code="0">(DE-625)143233:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">PHY 022f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Puta, Mircea</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Hamiltonian mechanical systems and geometric quantization</subfield><subfield code="c">by Mircea Puta</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Dordrecht u.a.</subfield><subfield code="b">Kluwer Acad. Publ.</subfield><subfield code="c">1993</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">VIII, 278 S.</subfield><subfield code="b">graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Mathematics and its applications</subfield><subfield code="v">260</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hamiltonian systems</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Poisson manifolds</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Symplectic manifolds</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Geometrische Quantisierung</subfield><subfield code="0">(DE-588)4156720-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Hamiltonsches System</subfield><subfield code="0">(DE-588)4139943-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Hamiltonsches System</subfield><subfield code="0">(DE-588)4139943-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Geometrische Quantisierung</subfield><subfield code="0">(DE-588)4156720-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Mathematics and its applications</subfield><subfield code="v">260</subfield><subfield code="w">(DE-604)BV008163334</subfield><subfield code="9">260</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HBZ Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=005402678&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="n">oe</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-005402678</subfield></datafield></record></collection> |
id | DE-604.BV008185872 |
illustrated | Illustrated |
indexdate | 2024-07-09T17:15:59Z |
institution | BVB |
isbn | 0792323068 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-005402678 |
oclc_num | 246724640 |
open_access_boolean | |
owner | DE-12 DE-19 DE-BY-UBM DE-11 DE-188 DE-91G DE-BY-TUM |
owner_facet | DE-12 DE-19 DE-BY-UBM DE-11 DE-188 DE-91G DE-BY-TUM |
physical | VIII, 278 S. graph. Darst. |
publishDate | 1993 |
publishDateSearch | 1993 |
publishDateSort | 1993 |
publisher | Kluwer Acad. Publ. |
record_format | marc |
series | Mathematics and its applications |
series2 | Mathematics and its applications |
spelling | Puta, Mircea Verfasser aut Hamiltonian mechanical systems and geometric quantization by Mircea Puta Dordrecht u.a. Kluwer Acad. Publ. 1993 VIII, 278 S. graph. Darst. txt rdacontent n rdamedia nc rdacarrier Mathematics and its applications 260 Hamiltonian systems Poisson manifolds Symplectic manifolds Geometrische Quantisierung (DE-588)4156720-1 gnd rswk-swf Hamiltonsches System (DE-588)4139943-2 gnd rswk-swf Hamiltonsches System (DE-588)4139943-2 s Geometrische Quantisierung (DE-588)4156720-1 s DE-604 Mathematics and its applications 260 (DE-604)BV008163334 260 HBZ Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=005402678&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Puta, Mircea Hamiltonian mechanical systems and geometric quantization Mathematics and its applications Hamiltonian systems Poisson manifolds Symplectic manifolds Geometrische Quantisierung (DE-588)4156720-1 gnd Hamiltonsches System (DE-588)4139943-2 gnd |
subject_GND | (DE-588)4156720-1 (DE-588)4139943-2 |
title | Hamiltonian mechanical systems and geometric quantization |
title_auth | Hamiltonian mechanical systems and geometric quantization |
title_exact_search | Hamiltonian mechanical systems and geometric quantization |
title_full | Hamiltonian mechanical systems and geometric quantization by Mircea Puta |
title_fullStr | Hamiltonian mechanical systems and geometric quantization by Mircea Puta |
title_full_unstemmed | Hamiltonian mechanical systems and geometric quantization by Mircea Puta |
title_short | Hamiltonian mechanical systems and geometric quantization |
title_sort | hamiltonian mechanical systems and geometric quantization |
topic | Hamiltonian systems Poisson manifolds Symplectic manifolds Geometrische Quantisierung (DE-588)4156720-1 gnd Hamiltonsches System (DE-588)4139943-2 gnd |
topic_facet | Hamiltonian systems Poisson manifolds Symplectic manifolds Geometrische Quantisierung Hamiltonsches System |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=005402678&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
volume_link | (DE-604)BV008163334 |
work_keys_str_mv | AT putamircea hamiltonianmechanicalsystemsandgeometricquantization |