Systèmes fondamentaux en optique quantique: Les Houches, 25 juin - 27 juilet 1990 = Fundamental systems in quantum optics
Gespeichert in:
Format: | Buch |
---|---|
Sprache: | Undetermined |
Veröffentlicht: |
Amsterdam u.a.
North-Holland
1992
|
Schriftenreihe: | École d'Été de Physique Théorique <LesHouches>: Session
53 |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | XXXVIII, 1123 S. Ill., graph. Darst. |
ISBN: | 0444897364 |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV008170888 | ||
003 | DE-604 | ||
005 | 19930819 | ||
007 | t | ||
008 | 930816s1992 ad|| |||| 10||| undod | ||
020 | |a 0444897364 |9 0-444-89736-4 | ||
035 | |a (OCoLC)644121780 | ||
035 | |a (DE-599)BVBBV008170888 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | |a und | ||
049 | |a DE-12 |a DE-384 |a DE-91G |a DE-703 |a DE-19 |a DE-29T |a DE-20 | ||
084 | |a UH 5600 |0 (DE-625)145666: |2 rvk | ||
084 | |a PHY 370f |2 stub | ||
245 | 1 | 0 | |a Systèmes fondamentaux en optique quantique |b Les Houches, 25 juin - 27 juilet 1990 = Fundamental systems in quantum optics |c éd. par J. Dalibard ... |
246 | 1 | 1 | |a Fundamental systems in quantum optics |
264 | 1 | |a Amsterdam u.a. |b North-Holland |c 1992 | |
300 | |a XXXVIII, 1123 S. |b Ill., graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a École d'Été de Physique Théorique <LesHouches>: Session |v 53 | |
650 | 0 | 7 | |a Quantenoptik |0 (DE-588)4047990-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Atom |0 (DE-588)4003412-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Elektromagnetische Strahlung |0 (DE-588)4014297-8 |2 gnd |9 rswk-swf |
655 | 7 | |0 (DE-588)1071861417 |a Konferenzschrift |y 1990 |z Les Houches |2 gnd-content | |
689 | 0 | 0 | |a Quantenoptik |0 (DE-588)4047990-0 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Atom |0 (DE-588)4003412-4 |D s |
689 | 1 | 1 | |a Elektromagnetische Strahlung |0 (DE-588)4014297-8 |D s |
689 | 1 | |5 DE-604 | |
700 | 1 | |a Dalibard, J. |e Sonstige |4 oth | |
830 | 0 | |a École d'Été de Physique Théorique <LesHouches>: Session |v 53 |w (DE-604)BV000022608 |9 53 | |
856 | 4 | 2 | |m Digitalisierung TU Muenchen |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=005391452&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-005391452 |
Datensatz im Suchindex
_version_ | 1804122554255802368 |
---|---|
adam_text | CONTENTS
Lecturers
Participants
Préface
Preface
Contents
Course
1.
Atomic motion in laser light, by C. Cohen-
Tannoudji
1
1.
General introduction
7
1.1.
Purpose of this course
7
1.2.
The interacting systems
7
1.3.
Characteristic times
8
1.4.
Outline of the course
10
I Two-level atoms
12
2.
Radiative force in the semi-classical limit
12
2.1.
Hamiltonian
12
2.2. Heisenberg
equations
13
2.3.
Semiclassical limit
15
2.3.1.
Localization conditions
15
2.3.2.
Is localization maintained at later times?
17
2.4.
Mean force and
Langevin
force
19
2.5.
Optical Bloch equations
(ОВБ)
21
3.
Mean radiative force for a two-level atom initially at rest
23
3.1.
Steady-state solution of optical Bloch equations
24
3.2.
Reactive response and dissipative response
24
3.3.
Dissipative force
-
Radiation pressure
26
xxiii
3.4.
Reactive force
-
Dipole
force
28
4.
Moving atom. Friction force
30
4.1.
Simple case of a laser plane wave
31
4.2.
Laser standing wave
33
4.2.1.
Limit of small velocities (k]_,vo <C
Г)
34
4.2.2.
Arbitrary velocity. Method of continued fractions
36
4.3.
The
σ+- σ
configuration for a Jg
= 0 «->
Je
= 1
transition
38
5.
Fluctuations of radiative forces
39
5.1.
Classical Brownian motion
40
5.1.1.
Langevin
equation
40
5.1.2.
Momentum diffusion coefficient
41
5.1.3.
Classical regression theorem
42
5.1.4.
Kramers-Fokker-Planck equation
44
5.2.
Analysis of momentum diffusion in the
Heisenberg
picture
46
5.2.1.
Momentum diffusion coefficient and
Langevin
force op¬
erator
46
5.2.2.
Correlation function of the
Langevin
force operator
47
5.2.3.
Physical discussion
48
5.2.4.
The
Doppler
limit in laser cooling
52
5.3.
Quantum kinetic equation for the atomic Wigner function
53
5.3.1.
Atomic Wigner function
53
5.3.2.
Generalized optical Bloch equations
54
5.3.3.
Approximations leading to a Kramers-Fokker-Planck
equation
55
5.3.4.
Physical discussion
56
6.
Basic physical processes in the perturbative limit
59
6.1.
Introduction
59
6.2.
Simple case of an atom in a laser plane wave
60
6.3.
Atom in a node of a standing wave
64
6.3.1.
Initial state of the atom
+
field system
64
6.3.2.
Amplitude to remain in one of the initially populated
states
65
6.3.3.
Physical discussion
69
6.4.
Atom at rest in any point of a standing wave
72
6.4.1.
Initial atomic state
72
6.4.2.
New expression for the state vector of A+F at time
T
72
6.4.3.
Absorption of the incident photon
74
6.4.4.
Uncorrelated redistribution and
dipole
forces
75
6.4.5.
Total momentum diffusion coefficient
75
6.5.
Atom moving in a standing wave
76
7.
Physical mechanisms in the high intensity limit
78
7.1.
Introduction
78
7.2.
The dressed-atom approach
79
7.3.
Dressed-atom interpretation of
dipole
forces
82
7.4.
Atomie
motion
in an intense laser standing wave
-
Sisyphus
cooling
85
II Multi-level atoms
88
8.
Optical pumping, light shifts and mean radiative forces
88
8.1.
Introduction
88
8.2.
Basic equations for multilevel atoms
89
8.2.1.
Approximations
89
8.2.2.
Operator form of optical Bloch equations
91
8.2.3.
Expression of the mean force
92
8.3.
Limit of low saturation and low velocity
92
8.3.1.
New possible approximations
92
8.3.2.
Adiabatic elimination of the excited state
93
8.3.3.
Equation of motion of the ground-state density matrix
94
8.4.
Light shifts of the ground-state
subleveis
96
8.4.1.
Hamiltonian part of the equations of motion
96
8.4.2.
Properties of light shifts
96
8.5.
Relaxation associated with optical pumping
97
8.5.1.
Departure rates
97
8.5.2.
Feeding of the ground state by spontaneous emission
98
8.5.3.
Zeeman
coherence effects
99
8.5.4.
Case of a moving atom
99
8.6.
General properties of the mean force
100
8.6.1.
Reactive component and dissipative component
100
8.6.2.
Interpretation of the reactive component
101
8.6.3.
Interpretation of the dissipative component
104
8.6.4.
Particular case of one-dimensional molasses
105
9.
Low intensity Sisyphus cooling
105
9.1.
Introduction
105
9.2.
Presentation of the model
107
9.2.1.
Laser configuration
107
9.2.2.
Atomic transition. Simplifications for the mean force
108
9.3.
Dynamics of the internal degrees of freedom
109
9.3.1.
Light shifts of the ground-state
subleveis
109
9.3.2.
Optical pumping rates 111
9.3.3.
Steady-state populations for an atom at rest
112
9.4.
Cooling mechanism for a moving atom
113
9.4.1.
Sisyphus effect
113
9.4.2.
Threshold intensity
-
Cooling limit
114
9.4.3.
Comparison of internal and external times
115
9.5.
The jumping regime (QoscTp <C
1) 116
9.5.1.
Internal state for an atom with velocity
v
117
9.5.2.
Velocity dependent mean force. Friction coefficient
118
9.5.3.
Equilibrium temperature
119
9.6.
The limits of low intensity Sisyphus cooling
120
9.6.1.
Results of a full quantum treatment
121
9.6.2.
The oscillating regime
(ßoscTp » 1) 122
10.
The
σ+~σ~
laser configuration
-
Semiclassical theory
123
10.1.
Introduction
123
10.2.
General expression of the mean force
126
10.2.1.
Effective Hamiltonian associated with light shifts
126
10.2.2.
Reactive force
127
10.2.3.
Dissipative force
128
10.3.
Internal state of an atom at rest
128
10.3.1.
Light shifts
128
10.3.2.
Optical pumping and steady-state populations
130
10.4.
Internal state for a moving atom
132
10.4.1.
Transformation to the moving rotating frame
132
10.4.2.
New Hamiltonian
-
new equations of motion
133
10.4.3.
New expression of the mean force
134
10.5.
Friction force for a Jg
= 1 <->
Je
= 2
transition
136
10.5.1.
Friction coefficient
136
10.5.2.
Velocity capture range
138
10.5.3.
Order of magnitude of the equilibrium temperature
139
10.5.4.
Anomalous momentum diffusion
140
10.6.
Coherent population trapping for a Jg
= 1 <-»
Je
= 1
transition
141
10.6.1.
Qualitative discussion
141
10.6.2.
Velocity dependence of the total fluorescence rate
143
10.6.3.
Consequences for atomic motion
144
11.
Laser cooling below the single photon recoil limit
144
11.1.
Introduction
144
11.1.1.
The single photon recoil limit
144
11.1.2.
Velocity selective coherent population trapping
145
11.1.3.
Optical pumping in velocity space
146
11.1.4.
Failure of semi-classical treatments
146
11.2.
One-dimensional quantum treatment
147
11.2.1.
Quantum atomic states uncoupled to the laser light
147
11.2.2.
Couplings induced by atomic motion
148
11.2.3.
Decay rates due to spontaneous emission
149
11.2.4.
Spontaneous transfers between different families
154
11.2.5.
Expected final momentum distribution
156
11.3.
Generalization to higher dimensions
157
11.3.1.
Equivalent expression for the absorption amplitude
157
11.3.2.
Conditions for having a trapping state
158
11.3.3.
Finding a trapping state
159
References
161
xxvi
Course
2.
Laser
cooling, optical traps and optical mo¬
lasses, by
W.O.
Phillips
165
Introduction
169
1.
Doppler
cooling
169
1.1.
The
Doppler
shift
169
1.2.
Radiation pressure
170
1.3.
Deflection of an atomic beam
171
1.4.
Deceleration of an atomic beam
174
1.5.
Optical molasses in one dimension
177
1.6.
Optical molasses in
N
dimensions
183
1.7.
Spatial diffusion in optical molasses
184
2.
Optical traps
186
2.1.
Introduction
186
2.2.
Radiation pressure traps
186
2.3.
Optical Earnshaw theorem
188
2.4.
Magneto-optic trap (MOT)
190
2.5.
Dipole
force traps
193
2.6.
Hybrid optical trap
196
3.
Experiments with optical molasses
198
3.1.
Introduction
198
3.2.
The early experiments
199
3.3.
Sub-Doppler temperatures
200
3.4.
Experiments with polarization gradient cooling
204
3.5.
Conclusions
207
References
208
Course
3.
Phase transitions of stored laser-cooled ions,
byH. Walther
211
1.
Introduction
215
2.
Laser cooled ions in a Paul-trap
217
2.1.
Description of the trap
217
2.2.
Theory of many ions in a Paul trap
219
2.3.
Experimental and theoretical results
222
2.4.
The crystal—
łdoud
transition
232
2.5.
Laser cooling and laser heating
236
2.6.
The rf heating mechanism
242
2.7.
The structure and dynamics of many-ion crystals
246
3.
Implications for crystallization in storage rings
247
4.
Summary and conclusions
249
References
250
Course
4.
Laser
cooling of trapped ions, by R.
Blatt 253
1.
Why trapping and cooling ions?
257
2.
Ion storage devices
257
2.1.
Paul trap
258
2.2.
Penning trap
259
3.
Theory of laser cooling in ion traps
260
3.1.
Laser cooling of free atoms
260
3.2.
Laser cooling of trapped particles
262
3.2.1.
Time scales
263
3.2.2.
Weak and strong binding
264
3.3.
Some equations for cooling in traps
265
3.4.
Cooling to the quantum limit
268
3.5.
Laser cooling of trapped three-level ions
269
3.5.1.
Cooling rates in a trapped three-level ion
270
3.5.2.
Two-photon resonances and Raman cooling
271
3.5.3.
Stable orbits of laser cooled three-level ions
273
4.
Experiments with laser-cooled trapped ions
274
4.1.
Laser cooling in Paul traps
274
4.2.
Laser cooling in Penning traps
275
4.3.
Measuring temperatures of trapped ions
276
4.4.
Some applications of laser cooled ions in traps
278
4.4.1.
Quantum amplification
279
4.4.2.
Precision measurements
280
4.5.
Motion of a laser cooled three-level ion in a Paul trap
282
5.
State of the art and open questions
283
References
285
Course
5.
Propagation of laser beams and of atomic
systems, by Ch.J.
Bordé
287
1.
Introduction: where laser physics meets storage rings physics
291
2.
Separate equations for the laser beam phase, amplitude and geometry
294
3.
Introduction of the basic spinor and corresponding equation
297
4.
Integrated equations and ABCD matrices
300
5.
Extension of the formalism to higher order modes
303
6.
Interpretation in terms of creation/annihilation operators
308
7.
The Wigner function for laser beams/point masses
313
8.
Pseudo-spin representation
320
9.
Beyond the paraxial and scalar approximations
321
9.1.
Spherical waves with complex argument
322
9.2.
Vector solutions
336
10.
A propagator for laser beams and for non-relativistic atoms in grav¬
itational or
inerţial
fields
342
11.
Conclusion
359
Appendix
1.
Time-derivatives of the electric polarization
363
Appendix
2.
Fourier transforms and orthonormality of laser modes
365
Appendix
3.
Relationship between time-dependent and time-independent
Green functions
371
Appendix
4.
Outline of the lectures
374
References
376
Course
6.
Chaos in atomic systems, by D.
Delande
381
1.
Introduction
385
2.
Classical mechanics: regularity and chaos
386
2.1.
Integrable
systems
386
2.2.
Quasi-integrable systems
387
2.3.
Chaotic systems
388
2.4.
Poincaré
surfaces of section
388
3.
Finding a real chaotic system
389
4.
The hydrogen atom in a magnetic field
-
classical dynamics
390
4.1.
Scaling law
-
equivalence with harmonic oscillators
390
4.2.
The weak-field behaviour
392
4.3.
The strong-field behaviour
393
5.
Quantum dynamics in the regular regime
394
5.1.
Equivalence with harmonic oscillators
394
5.2.
First-order perturbation theory
395
5.3.
Semi-classical quantization
396
5.4.
Eigenstates
397
5.5.
Numerical simulation of the spectrum
398
5.6.
Experimental results
399
6.
Quantum dynamics in the chaotic regime
400
6.1.
Energy spectrum
400
6.2.
Statistical properties of energy levels
401
6.2.1.
Regular regime
402
6.2.2.
Chaotic regime
403
6.2.3.
Random matrix theory
403
6.2.4.
Experimental results
404
7.
Semi-classical approximation for chaotic systems
404
7.1.
Energy scales
-
time scales
405
7.2.
Semi-classical expression of the Green function
407
7.3.
The trace formula
408
7.4.
Semi-classical approximation and random matrix theory
409
7.5.
Eigenstates
410
7.6.
Experimental
results
413
8.
Conclusion
413
References
415
Course
7.
Experimental studies of chaos in an atomic
system, by D. Kleppner
417
1.
Introduction
421
1.1.
Classical regimes of behavior
422
1.2.
Quantum regimes of behavior
423
2.
Some experimental details
425
2.1.
General approach
426
2.2.
Determining the magnetic field
427
3.
The orderly regime
428
3.1.
Level crossing phenomena
429
4.
Energy level fluctuations
431
5.
Quantum behavior in a regime of chaos
434
References
438
Course
8.
Atomic physics tests of the electroweak the¬
ory: parity violation experiments,
by Ph.
Jacquier
439
1.
Introduction
443
1.1.
Some definitions
443
1.1.1.
Parity
443
1.1.2.
Vectors, pseudovectors, etc.
444
1.2.
Parity conservation
445
1.3.
Parity violation
446
2.
First PV tests of the electroweak theory
446
2.1.
A very quick look at the standard model
446
2.1.1.
Matter and forces
446
2.1.2.
Weak neutral currents
448
2.1.3.
Weak-electromagnetic interference and parity violation
450
2.2.
The SLAC experiment
452
2.3.
PV experiments in atoms
453
2.3.1.
The weak potential
453
2.3.2.
Optical rotation experiments
455
2.3.3.
Experiments on Stark-aided highly forbidden M transi¬
tions
456
2.4.
Atomic PV versus high energy experiments
461
2.4.1. Determination
of the coupling constants C and Cf
461
2.4.2.
Extension of the tested domain of the electroweak theory
462
2.4.3.
Complementarity of atomic physics and high energy exper¬
iments
463
3.
Current progress in atomic PV experiments
463
3.1.
The case of cesium
463
3.1.1.
Calculations
463
3.1.2.
The Boulder experiment
465
3.1.3.
The new ENS experiment
467
3.2.
Other atoms
473
3.2.1.
New optical rotation experiments
473
3.2.2.
New Stark experiments on Tl
473
3.2.3.
Exotic atoms
473
4.
New atomic PV experiments as significant tests of the Standard Model
474
4.1.
Axial nucleonic-vector electronic coupling of the Z°
475
4.2.
Radiative corrections
478
References
481
Course
9.
Atomic hydrogen and liquid helium sur¬
faces, by J.T.M.
Wataven
485
1.
Introduction
489
2.
Fundamentals
490
2.1.
Atomic constants and hyperfme structure
490
2.2.
Interaction potentials
492
3.
Hydrogen adsorbed on the surface of liquid helium
493
3.1.
Hydrogen as a quasi-particle in liquid helium
495
3.2.
Properties of single adsorbed atoms
498
3.3.
The
adsórbate
as a dilute gas
503
3.4.
Variational calculations
507
3.5.
Quasi-two-dimensional or quasi three-dimensional behavior?
508
3.6.
The surface adsorption isotherms and KTT
511
4.
Collisions of
Н
-atoms with the surface of liquid helium
513
4.1.
The elementary excitations of the 4He surface: ripplons
514
4.2.
Atom-ripplon coupling
518
4.3.
Surface adsorption: sticking coefficient
521
4.3.1.
Ripplon mediated adsorption
522
4.3.2.
Phonon-mediated adsorption
524
4.3.3.
Adsorption near the saturation density
525
4.4.
Thermal averaging, detailed balance and thermal desorption
525
4.5.
Direct inelastic scattering
527
4.5.1.
Quasi-elastic scattering (E 3> k^Tv.)
528
4.5.2.
Low-energy scattering limit (E <C
ί βϊ«·)
529
4.6.
Thermal accommodation
and boundary resistance
530
5.
Experimental results
531
5.1.
Measurements of the sticking coefficient
531
5.1.1.
Magnetic resonance experiments
531
5.1.2.
Capillary flow experiment
532
5.1.3.
Mirror experiment
534
5.2.
Measurements of the accommodation coefficient
535
5.3.
Discussion, recent developments and prospects
537
References
540
Course
10.
Quantum
ñuctuations
in quantum optics
squeezing and related phenomena,
by H.J. Kimble
545
Introduction
549
1.
The damped harmonic oscillator
552
1.1.
System dynamics
556
1.2.
Reservoir dynamics (input-output formalism)
561
2.
Description of field fluctuations
567
3.
Squeezed states of the electromagnetic field
582
3.1.
Transformation of states
584
3.2.
Transformation of operators
585
3.3.
Wigner distribution for a squeezed state
586
4.
Photo-electric detection of squeezed light
595
5.
The optical parametric oscillator-theory
606
6.
The optical parametric oscillator-experiment
619
7.
Squeezed light for sensitivity beyond the vacuum-state limit
626
8.
Nondegenerate
parametric amplification
635
8.1.
Subthreshold
ΟΡΟ
-
polarization
nondegenerate,
frequency de¬
generate
640
8.1.1.
Correlated beams and quantum measurement
643
8.1.2.
The EPR paradox
645
8.1.3.
Quantum limits to amplification
650
8.2.
Parametric amplification and frequency conversion for quantum
nondemolitíon (QND)
measurements
653
8.3.
On the utility of nonclassical effects
656
9.
Survey of quadrature-phase squeezing
657
10.
Summary and conclusions
661
References
669
Course
11.
Quantum noise
in optical systems:
a
semi-
classical approach, by
С.
Fahre and
S. Rey-
naud
675
1.
Introduction
679
2.
Description
of the semi-classical method
679
2.1.
Principle of the method
679
2.2.
Example of the optical parametric amplifier
680
2.2.1.
Time evolution approach
681
2.2.2.
Modal approach
682
2.3.
Validity domain of the method
683
2.3.1.
Condition for the equation of motion
683
2.3.2.
The Wigner distribution
685
2.3.3.
Case of a quadratic Hamiltonian
686
2.3.4.
Propagation effects: canonical transformations
687
2.4.
Amplitude of input fluctuations
689
2.4.1.
Quantized field normalization
689
2.4.2.
Case of input vacuum or coherent field
690
2.5.
Conclusion
691
3.
Applications to single mode problems
692
3.1.
Kerr medium in a cavity
692
3.1.1.
Pure Kerr medium
692
3.1.2.
Effect of linear losses
694
3.1.3.
A low loss Kerr medium: cavity with moving mirrors
694
4.
Parametric interaction in a cavity
696
4.1.
Evolution equations for the fields
696
4.2.
Intracavity frequency doubling
698
4.3.
Degenerate parametric oscillator
700
4.3.1.
Stationary solutions and stability analysis
700
4.3.2.
Noise spectra
701
4.3.2.1.
Resonant case.
701
4.3.2.2.
Bistable region.
702
4.3.2.3.
Unstable region.
702
4.4.
Nondegenerate
parametric oscillation (NDOPO)
703
4.4.1.
Stationary values
703
4.4.2.
Stability analysis and fluctuation spectra
704
4.4.2.1.
Signal field.
705
4.4.2.2.
Difference between the signal and idler field inten¬
sities.
705
5.
Intensity squeezing using electronic correction
707
6.
Conclusion
709
References
709
Course
12.
More on interference in phase space,
by K.
Vogel
and W.
Schleich 713
1.
Interference in phase space: but which phase space?
717
2.
Oscillations in the photon distribution of a highly squeezed state: a
review
725
3.
From one-dimensional x-space to two-dimensional
χ — ρ
oscillator
phase space
732
3.1.
Coherent state expansion: photon probability amplitude from
two-dimensional phase space integration
732
3.2.
Back to one-dimensional integration: a number state as a phase
space line integral
735
4.
Semiclassical considerations
737
4.1.
Interference in Planck-Bohr-Sommerfeld phase space
737
4.2.
Interference in Q-function phase space
740
5.
Summary
746
Appendix
1.
The large m-limit of an energy eigenstate
751
Appendix
2.
Number probability amplitude, wm (a
= 0),
of
а
highly
squeezed vacuum
757
Appendix
3.
Q-function of a squeezed state
758
References
760
Course
13.
Cavity quantum electrodynamics,
by S. Haroche
767
Introduction
771
1.
Classical electrodynamics in a cavity
778
1.1.
Introduction
778
1.2.
Radiation of a classical
dipole
in free space
778
1.3.
Dipole
radiating in a cavity
781
1.4.
A prototype problem: antenna in front of a single plane mirror
783
1.5.
Classical
dipole
radiating between two parallel mirrors
788
1.6.
Arbitrary cavity geometry. A simple analysis in terms of cavity
modes
791
1.6.1.
Dipole
weakly coupled to a continuum of cavity modes
794
1.6.2.
Strong dipole-cavity mode coupling
800
2.
Perturbative cavity QED (low
Q
regime)
802
2.1.
Introduction
802
2.2.
The quantum description of the atom-field system
803
2.2.1.
Field description
803
2.2.2.
The atom-field Hamiltonian
804
2.3.
Counting modes between two mirrors: the
Casimir
effect
806
2.4. Radiation
of atoms in a cavity: modification of spontaneous
emission rates
813
2.5.
Radiative corrections in cavity QED
816
2.6.
The Coulomb term: instantaneous van
der Waals
atom-wall in¬
teraction
817
2.7.
The A term: mass renormalization due to vacuum fluctuations
821
2.8.
The
Α ·ρ
term: contribution of virtual photon processes
823
2.9.
The total radiative shift at small atom-wall distance
827
2.10.
The total radiative shift at large atom-wall distance
830
2.11.
Other cavity geometries
83-4
2.12.
Experiments in perturbative cavity QED
835
2.13.
Appendix A2: The
Ѓ?)
integrals
837
2.14.
Appendix B2: Versions of the
Reiche-
Thomas
Kuhn
sum rules
841
3.
Nonperturbative cavity QED (high
Q
regime): vacuum
Rabi
splitting
and related effects
843
3.1.
Introduction. Description of the system. A reminder about the
dressed atom formalism
843
3.2.
The dressed atom cavity energy diagram
849
3.3.
Spectroscopy of the atom-cavity system
852
3.3.1.
Atomic type spectroscopy
853
3.3.2.
Cavity-type spectroscopy
856
3.3.3.
Multiphoton processes
859
3.3.4.
Which observable to detect?
861
3.4.
Collective vacuum
Rabi
splitting (N atoms in cavity)
862
3.4.1.
The symmetric coupling case
863
3.4.2.
Generalization to a nonsymmetrical coupling
865
3.5.
Inhomogeneous
Rabi
splitting and resonant vacuum forces on
excited atoms in a cavity
868
4.
Micromasers
872
4.1.
Introduction
872
4.2.
General description of micromasers. Orders of magnitude
874
4.3.
Theory of the micromaser. Field statistical properties
877
4.3.1.
The master equation for the field density operator
878
4.3.2.
Classical limit of the field master equation
882
4.3.3.
Photon statistics in the micromaser
884
4.3.4.
Micromaser transient behavior:
Fokker
Planck approach
892
4.4.
Numerical simulations of single micromaser realizations
895
4.5.
Trapping states of the micromaser field
899
4.6.
Atomic statistics in the micromaser
902
4.7.
Characteristic features of two-photon micromasers
906
5.
Quantum measurements in cavity QED
908
5.1.
Introduction
908
5.2.
QND field measurement by detection of cavity induced disper¬
sive effects on atoms
910
xxxv
5.2.1.
A reminder on QND
910
5.2.2.
The principle of QND photon measurement using atoms
as a probe
912
5.2.3.
Discussion of orders of magnitude
915
5.2.4.
Detection of the atomic phase by the Ramsey method
916
5.3.
Continuous QND measurement of the photon number in a cavity
919
5.4.
Evolution of the field phase in a QND measurement of the pho¬
ton number
924
5.5.
Realization of
Schrödinger
cats
925
5.6.
Fock states and possible experiments on complementarity in
quantum mechanics
927
5.6.1.
Tagging atoms with fields in Fock states
928
5.6.2.
Atomic coherence and Fock state tagging
928
5.6.3.
Interpretation in terms of quantum mechanical comple¬
mentarity
930
5.6.4.
Quantum eraser experiment
931
6.
Conclusion
933
References
935
Course
14.
Multistability, chaos and spatio-temporal
dynamics, by L.A. Lugiato and L.M. Nar-
ducci
941
1.
Introduction
945
2.
Some general notions on nonlinear dissipative dynamical systems
948
2.1.
Stationary solutions and their stability
949
2.2.
Attractors and
repellere; bistability
and multistability
951
2.3.
Other kinds of attractors: limit cycles, tori, strange attractors.
Deterministic chaos: generalized multistability
952
2.4.
Transitions induced by the variation of a control parameter
954
2.4.1.
Steady state hysteresis cycle in a bistable system
954
2.4.2.
Steady state bifurcation
956
2.4.3. Hopf
bifurcation
956
2.4.4.
Routes to chaos
957
2.5.
Adiabatic elimination of the fast variables
957
2.6.
The potential case
959
3.
The Maxwell-Bloch equations for active and passive systems
960
3.1.
The plane wave approximation
963
3.2.
The uniform field limit
964
3.3.
Modal equations and stationary solutions
967
3.4.
The single-mode model
969
3.5.
The good and the bad cavity limits
970
4.
The linear stability analysis of the Maxwell-Bloch equations
971
xxxvi
5.
Optical bistability
978
5.1.
Steady state behavior
978
5.2.
Oscillatory instabilities
980
5.3.
The multimode instability
983
5.4.
The single-mode instability
985
5.5.
The laser with an injected signal
989
6.
The laser in the plane-wave approximation
990
6.1.
Steady state behavior
990
6.2.
The single-mode instability
991
6.3.
The multimode amplitude instability
994
6.4.
The multimode phase instability
996
7.
Transverse spatio-temporal dynamics in lasers
1000
7.1.
Cooperative frequency locking
1001
7.2.
The equations of the ring laser with spherical mirrors
1003
7.3.
The single-transverse-mode model
1007
7.4.
Frequency degeneracy and quasi-degeneracy
1008
7.5.
The case of no quasi-degeneracy. Stationary intensity solutions
and low threshold instabilities
1009
7.6.
The quasi-degenerate case. Dynamical oscillations and cooper¬
ative frequency locked states
1015
7.7.
Laser hydrodynamics
1019
7.8.
Laser patterns from frequency degenerate families of modes.
Spontaneous breaking of the cylindrical symmetry. Spatial mul-
tistability
1023
7.9.
Phase singularity crystals
1028
7.10.
Variational principle for pattern selection with frequency de¬
generate families
1031
7.11.
Restoration of cylindrical symmetry by noise
1036
Appendix A.
1039
References
1042
Course
15.
Surface nonlinear optics and applications,
by Y.R. Shen
1049
Introduction
1053
1.
Wave mixing and coherent transient spectroscopy
1054
2.
Surface nonlinear optics and applications
1068
2.1.
Introduction
1068
2.2.
Basic theory
1070
2.3.
Surface nonlinear susceptibilities
1074
2.4.
Experimental considerations
1079
2.5.
Applications
1080
2.5.1.
Study of molecular adsorption and desorption at an in¬
terface
1081
2.5.2.
Probing structure symmetry of an interface
1082
2.5.3.
Measurements of orientation of molecules at an interface
1085
2.5.4.
Studies of Langmuir-type molecular monolayers
1086
2.5.5.
Surface spectroscopy of electronic transitions
1088
2.5.6.
Surface vibrational spectroscopy
1090
2.6.
Conclusion
1094
3.
Some unusual nonlinear optical phenomena in liquid crystals
1095
4.
Multiphoton-ionization of atoms
1105
References
1118
|
any_adam_object | 1 |
building | Verbundindex |
bvnumber | BV008170888 |
classification_rvk | UH 5600 |
classification_tum | PHY 370f |
ctrlnum | (OCoLC)644121780 (DE-599)BVBBV008170888 |
discipline | Physik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01921nam a2200433 cb4500</leader><controlfield tag="001">BV008170888</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">19930819 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">930816s1992 ad|| |||| 10||| undod</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0444897364</subfield><subfield code="9">0-444-89736-4</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)644121780</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV008170888</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">und</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-384</subfield><subfield code="a">DE-91G</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-29T</subfield><subfield code="a">DE-20</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UH 5600</subfield><subfield code="0">(DE-625)145666:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">PHY 370f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Systèmes fondamentaux en optique quantique</subfield><subfield code="b">Les Houches, 25 juin - 27 juilet 1990 = Fundamental systems in quantum optics</subfield><subfield code="c">éd. par J. Dalibard ...</subfield></datafield><datafield tag="246" ind1="1" ind2="1"><subfield code="a">Fundamental systems in quantum optics</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Amsterdam u.a.</subfield><subfield code="b">North-Holland</subfield><subfield code="c">1992</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XXXVIII, 1123 S.</subfield><subfield code="b">Ill., graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">École d'Été de Physique Théorique <LesHouches>: Session</subfield><subfield code="v">53</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Quantenoptik</subfield><subfield code="0">(DE-588)4047990-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Atom</subfield><subfield code="0">(DE-588)4003412-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Elektromagnetische Strahlung</subfield><subfield code="0">(DE-588)4014297-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="0">(DE-588)1071861417</subfield><subfield code="a">Konferenzschrift</subfield><subfield code="y">1990</subfield><subfield code="z">Les Houches</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Quantenoptik</subfield><subfield code="0">(DE-588)4047990-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Atom</subfield><subfield code="0">(DE-588)4003412-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Elektromagnetische Strahlung</subfield><subfield code="0">(DE-588)4014297-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Dalibard, J.</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">École d'Été de Physique Théorique <LesHouches>: Session</subfield><subfield code="v">53</subfield><subfield code="w">(DE-604)BV000022608</subfield><subfield code="9">53</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung TU Muenchen</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=005391452&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-005391452</subfield></datafield></record></collection> |
genre | (DE-588)1071861417 Konferenzschrift 1990 Les Houches gnd-content |
genre_facet | Konferenzschrift 1990 Les Houches |
id | DE-604.BV008170888 |
illustrated | Illustrated |
indexdate | 2024-07-09T17:15:43Z |
institution | BVB |
isbn | 0444897364 |
language | Undetermined |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-005391452 |
oclc_num | 644121780 |
open_access_boolean | |
owner | DE-12 DE-384 DE-91G DE-BY-TUM DE-703 DE-19 DE-BY-UBM DE-29T DE-20 |
owner_facet | DE-12 DE-384 DE-91G DE-BY-TUM DE-703 DE-19 DE-BY-UBM DE-29T DE-20 |
physical | XXXVIII, 1123 S. Ill., graph. Darst. |
publishDate | 1992 |
publishDateSearch | 1992 |
publishDateSort | 1992 |
publisher | North-Holland |
record_format | marc |
series | École d'Été de Physique Théorique <LesHouches>: Session |
series2 | École d'Été de Physique Théorique <LesHouches>: Session |
spelling | Systèmes fondamentaux en optique quantique Les Houches, 25 juin - 27 juilet 1990 = Fundamental systems in quantum optics éd. par J. Dalibard ... Fundamental systems in quantum optics Amsterdam u.a. North-Holland 1992 XXXVIII, 1123 S. Ill., graph. Darst. txt rdacontent n rdamedia nc rdacarrier École d'Été de Physique Théorique <LesHouches>: Session 53 Quantenoptik (DE-588)4047990-0 gnd rswk-swf Atom (DE-588)4003412-4 gnd rswk-swf Elektromagnetische Strahlung (DE-588)4014297-8 gnd rswk-swf (DE-588)1071861417 Konferenzschrift 1990 Les Houches gnd-content Quantenoptik (DE-588)4047990-0 s DE-604 Atom (DE-588)4003412-4 s Elektromagnetische Strahlung (DE-588)4014297-8 s Dalibard, J. Sonstige oth École d'Été de Physique Théorique <LesHouches>: Session 53 (DE-604)BV000022608 53 Digitalisierung TU Muenchen application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=005391452&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Systèmes fondamentaux en optique quantique Les Houches, 25 juin - 27 juilet 1990 = Fundamental systems in quantum optics École d'Été de Physique Théorique <LesHouches>: Session Quantenoptik (DE-588)4047990-0 gnd Atom (DE-588)4003412-4 gnd Elektromagnetische Strahlung (DE-588)4014297-8 gnd |
subject_GND | (DE-588)4047990-0 (DE-588)4003412-4 (DE-588)4014297-8 (DE-588)1071861417 |
title | Systèmes fondamentaux en optique quantique Les Houches, 25 juin - 27 juilet 1990 = Fundamental systems in quantum optics |
title_alt | Fundamental systems in quantum optics |
title_auth | Systèmes fondamentaux en optique quantique Les Houches, 25 juin - 27 juilet 1990 = Fundamental systems in quantum optics |
title_exact_search | Systèmes fondamentaux en optique quantique Les Houches, 25 juin - 27 juilet 1990 = Fundamental systems in quantum optics |
title_full | Systèmes fondamentaux en optique quantique Les Houches, 25 juin - 27 juilet 1990 = Fundamental systems in quantum optics éd. par J. Dalibard ... |
title_fullStr | Systèmes fondamentaux en optique quantique Les Houches, 25 juin - 27 juilet 1990 = Fundamental systems in quantum optics éd. par J. Dalibard ... |
title_full_unstemmed | Systèmes fondamentaux en optique quantique Les Houches, 25 juin - 27 juilet 1990 = Fundamental systems in quantum optics éd. par J. Dalibard ... |
title_short | Systèmes fondamentaux en optique quantique |
title_sort | systemes fondamentaux en optique quantique les houches 25 juin 27 juilet 1990 fundamental systems in quantum optics |
title_sub | Les Houches, 25 juin - 27 juilet 1990 = Fundamental systems in quantum optics |
topic | Quantenoptik (DE-588)4047990-0 gnd Atom (DE-588)4003412-4 gnd Elektromagnetische Strahlung (DE-588)4014297-8 gnd |
topic_facet | Quantenoptik Atom Elektromagnetische Strahlung Konferenzschrift 1990 Les Houches |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=005391452&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
volume_link | (DE-604)BV000022608 |
work_keys_str_mv | AT dalibardj systemesfondamentauxenoptiquequantiqueleshouches25juin27juilet1990fundamentalsystemsinquantumoptics AT dalibardj fundamentalsystemsinquantumoptics |