Fixpoint evaluation with subsumption for probabilistic uncertainty:
Abstract: "The deep complexity of uncertain data modelling has resisted to [sic] general solutions so far. Instead, a diversity of modelling approaches has been proposed over the years, but few systems actually have been built. The DUCK calculus is one recent ambitious rule- based attempt to mo...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
München
1992
|
Schriftenreihe: | Technische Universität <München>: TUM-I
9237 |
Schlagworte: | |
Zusammenfassung: | Abstract: "The deep complexity of uncertain data modelling has resisted to [sic] general solutions so far. Instead, a diversity of modelling approaches has been proposed over the years, but few systems actually have been built. The DUCK calculus is one recent ambitious rule- based attempt to model uncertainty on the grounds of established probability theory as typically used e.g. in medical diagnosis. This paper describes how deductive database technology can be exploited for prototyping of a system for uncertain reasoning. In particular we discuss the issues of ADT-ideas in Datalog by using interpreted predicates. Moreover we show that for safety reasons logic programming and current Datalog optimizers must be upgraded to deal with semantic optimization in form of subsumption New differential least fixpoint operators, customized for subsumption optimization, are provided. Finally, we outline the design and implementation of DUCK-Demonstrator/1.1 which serves as a research vehicle for ongoing studies of uncertain reasoning phenomena and for optimization of vague queries. |
Beschreibung: | 32 S. graph. Darst. |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV008037917 | ||
003 | DE-604 | ||
005 | 20180731 | ||
007 | t | ||
008 | 930716s1992 d||| |||| 00||| eng d | ||
016 | 7 | |a 941456374 |2 DE-101 | |
035 | |a (OCoLC)28491301 | ||
035 | |a (DE-599)BVBBV008037917 | ||
040 | |a DE-604 |b ger |e rakwb | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-91G | ||
088 | |a TUM I 9237 | ||
100 | 1 | |a Kießling, Werner |e Verfasser |0 (DE-588)1163627747 |4 aut | |
245 | 1 | 0 | |a Fixpoint evaluation with subsumption for probabilistic uncertainty |c Werner Kießling ; Gerhard Köstler ; Ulrich Güntzer |
264 | 1 | |a München |c 1992 | |
300 | |a 32 S. |b graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Technische Universität <München>: TUM-I |v 9237 | |
520 | 3 | |a Abstract: "The deep complexity of uncertain data modelling has resisted to [sic] general solutions so far. Instead, a diversity of modelling approaches has been proposed over the years, but few systems actually have been built. The DUCK calculus is one recent ambitious rule- based attempt to model uncertainty on the grounds of established probability theory as typically used e.g. in medical diagnosis. This paper describes how deductive database technology can be exploited for prototyping of a system for uncertain reasoning. In particular we discuss the issues of ADT-ideas in Datalog by using interpreted predicates. Moreover we show that for safety reasons logic programming and current Datalog optimizers must be upgraded to deal with semantic optimization in form of subsumption | |
520 | 3 | |a New differential least fixpoint operators, customized for subsumption optimization, are provided. Finally, we outline the design and implementation of DUCK-Demonstrator/1.1 which serves as a research vehicle for ongoing studies of uncertain reasoning phenomena and for optimization of vague queries. | |
650 | 4 | |a Künstliche Intelligenz | |
650 | 4 | |a Artificial intelligence | |
650 | 4 | |a Deductive databases | |
700 | 1 | |a Köstler, Gerhard |e Verfasser |4 aut | |
700 | 1 | |a Güntzer, Ulrich |e Verfasser |4 aut | |
830 | 0 | |a Technische Universität <München>: TUM-I |v 9237 |w (DE-604)BV006185376 |9 9237 | |
999 | |a oai:aleph.bib-bvb.de:BVB01-005288155 |
Datensatz im Suchindex
_version_ | 1804122402006761472 |
---|---|
any_adam_object | |
author | Kießling, Werner Köstler, Gerhard Güntzer, Ulrich |
author_GND | (DE-588)1163627747 |
author_facet | Kießling, Werner Köstler, Gerhard Güntzer, Ulrich |
author_role | aut aut aut |
author_sort | Kießling, Werner |
author_variant | w k wk g k gk u g ug |
building | Verbundindex |
bvnumber | BV008037917 |
ctrlnum | (OCoLC)28491301 (DE-599)BVBBV008037917 |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02292nam a2200373 cb4500</leader><controlfield tag="001">BV008037917</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20180731 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">930716s1992 d||| |||| 00||| eng d</controlfield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">941456374</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)28491301</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV008037917</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-91G</subfield></datafield><datafield tag="088" ind1=" " ind2=" "><subfield code="a">TUM I 9237</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Kießling, Werner</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1163627747</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Fixpoint evaluation with subsumption for probabilistic uncertainty</subfield><subfield code="c">Werner Kießling ; Gerhard Köstler ; Ulrich Güntzer</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">München</subfield><subfield code="c">1992</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">32 S.</subfield><subfield code="b">graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Technische Universität <München>: TUM-I</subfield><subfield code="v">9237</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">Abstract: "The deep complexity of uncertain data modelling has resisted to [sic] general solutions so far. Instead, a diversity of modelling approaches has been proposed over the years, but few systems actually have been built. The DUCK calculus is one recent ambitious rule- based attempt to model uncertainty on the grounds of established probability theory as typically used e.g. in medical diagnosis. This paper describes how deductive database technology can be exploited for prototyping of a system for uncertain reasoning. In particular we discuss the issues of ADT-ideas in Datalog by using interpreted predicates. Moreover we show that for safety reasons logic programming and current Datalog optimizers must be upgraded to deal with semantic optimization in form of subsumption</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">New differential least fixpoint operators, customized for subsumption optimization, are provided. Finally, we outline the design and implementation of DUCK-Demonstrator/1.1 which serves as a research vehicle for ongoing studies of uncertain reasoning phenomena and for optimization of vague queries.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Künstliche Intelligenz</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Artificial intelligence</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Deductive databases</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Köstler, Gerhard</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Güntzer, Ulrich</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Technische Universität <München>: TUM-I</subfield><subfield code="v">9237</subfield><subfield code="w">(DE-604)BV006185376</subfield><subfield code="9">9237</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-005288155</subfield></datafield></record></collection> |
id | DE-604.BV008037917 |
illustrated | Illustrated |
indexdate | 2024-07-09T17:13:18Z |
institution | BVB |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-005288155 |
oclc_num | 28491301 |
open_access_boolean | |
owner | DE-12 DE-91G DE-BY-TUM |
owner_facet | DE-12 DE-91G DE-BY-TUM |
physical | 32 S. graph. Darst. |
publishDate | 1992 |
publishDateSearch | 1992 |
publishDateSort | 1992 |
record_format | marc |
series | Technische Universität <München>: TUM-I |
series2 | Technische Universität <München>: TUM-I |
spelling | Kießling, Werner Verfasser (DE-588)1163627747 aut Fixpoint evaluation with subsumption for probabilistic uncertainty Werner Kießling ; Gerhard Köstler ; Ulrich Güntzer München 1992 32 S. graph. Darst. txt rdacontent n rdamedia nc rdacarrier Technische Universität <München>: TUM-I 9237 Abstract: "The deep complexity of uncertain data modelling has resisted to [sic] general solutions so far. Instead, a diversity of modelling approaches has been proposed over the years, but few systems actually have been built. The DUCK calculus is one recent ambitious rule- based attempt to model uncertainty on the grounds of established probability theory as typically used e.g. in medical diagnosis. This paper describes how deductive database technology can be exploited for prototyping of a system for uncertain reasoning. In particular we discuss the issues of ADT-ideas in Datalog by using interpreted predicates. Moreover we show that for safety reasons logic programming and current Datalog optimizers must be upgraded to deal with semantic optimization in form of subsumption New differential least fixpoint operators, customized for subsumption optimization, are provided. Finally, we outline the design and implementation of DUCK-Demonstrator/1.1 which serves as a research vehicle for ongoing studies of uncertain reasoning phenomena and for optimization of vague queries. Künstliche Intelligenz Artificial intelligence Deductive databases Köstler, Gerhard Verfasser aut Güntzer, Ulrich Verfasser aut Technische Universität <München>: TUM-I 9237 (DE-604)BV006185376 9237 |
spellingShingle | Kießling, Werner Köstler, Gerhard Güntzer, Ulrich Fixpoint evaluation with subsumption for probabilistic uncertainty Technische Universität <München>: TUM-I Künstliche Intelligenz Artificial intelligence Deductive databases |
title | Fixpoint evaluation with subsumption for probabilistic uncertainty |
title_auth | Fixpoint evaluation with subsumption for probabilistic uncertainty |
title_exact_search | Fixpoint evaluation with subsumption for probabilistic uncertainty |
title_full | Fixpoint evaluation with subsumption for probabilistic uncertainty Werner Kießling ; Gerhard Köstler ; Ulrich Güntzer |
title_fullStr | Fixpoint evaluation with subsumption for probabilistic uncertainty Werner Kießling ; Gerhard Köstler ; Ulrich Güntzer |
title_full_unstemmed | Fixpoint evaluation with subsumption for probabilistic uncertainty Werner Kießling ; Gerhard Köstler ; Ulrich Güntzer |
title_short | Fixpoint evaluation with subsumption for probabilistic uncertainty |
title_sort | fixpoint evaluation with subsumption for probabilistic uncertainty |
topic | Künstliche Intelligenz Artificial intelligence Deductive databases |
topic_facet | Künstliche Intelligenz Artificial intelligence Deductive databases |
volume_link | (DE-604)BV006185376 |
work_keys_str_mv | AT kießlingwerner fixpointevaluationwithsubsumptionforprobabilisticuncertainty AT kostlergerhard fixpointevaluationwithsubsumptionforprobabilisticuncertainty AT guntzerulrich fixpointevaluationwithsubsumptionforprobabilisticuncertainty |