Proceedings: June 15 - 18, 1992, Champaign, Ill.
Gespeichert in:
Körperschaft: | |
---|---|
Format: | Tagungsbericht Buch |
Sprache: | English |
Veröffentlicht: |
Los Alamitos, Calif.
IEEE Computer Soc. Press
1992
|
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | XVI, 870 S. Ill. u. graph. Darst. |
ISBN: | 0818628553 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV008028724 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | t | ||
008 | 930713s1992 ad|| |||| 10||| eng d | ||
020 | |a 0818628553 |9 0-8186-2855-3 | ||
035 | |a (OCoLC)26491917 | ||
035 | |a (DE-599)BVBBV008028724 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
049 | |a DE-91G |a DE-83 | ||
050 | 0 | |a TA1632 | |
082 | 0 | |a 006.3/7 |2 20 | |
084 | |a DAT 776f |2 stub | ||
084 | |a DAT 764f |2 stub | ||
111 | 2 | |a Conference on Computer Vision and Pattern Recognition |d 1992 |c Champaign, Ill. |j Verfasser |0 (DE-588)5084380-1 |4 aut | |
245 | 1 | 0 | |a Proceedings |b June 15 - 18, 1992, Champaign, Ill. |c 1992 IEEE Computer Vision Society Conference on Computer Vision and Pattern Recognition |
264 | 1 | |a Los Alamitos, Calif. |b IEEE Computer Soc. Press |c 1992 | |
300 | |a XVI, 870 S. |b Ill. u. graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
650 | 4 | |a Computer vision |v Congresses | |
650 | 4 | |a Pattern recognition systems |v Congresses | |
650 | 0 | 7 | |a Mustererkennung |0 (DE-588)4040936-3 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Datennetz |0 (DE-588)4011130-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Kunst |0 (DE-588)4114333-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Telekommunikationsnetz |0 (DE-588)4133586-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Computerkunst |0 (DE-588)4010453-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Maschinelles Sehen |0 (DE-588)4129594-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Mikrocomputer |0 (DE-588)4039206-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Bildverstehen |0 (DE-588)4202022-0 |2 gnd |9 rswk-swf |
655 | 7 | |0 (DE-588)1071861417 |a Konferenzschrift |2 gnd-content | |
689 | 0 | 0 | |a Maschinelles Sehen |0 (DE-588)4129594-8 |D s |
689 | 0 | 1 | |a Mustererkennung |0 (DE-588)4040936-3 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Bildverstehen |0 (DE-588)4202022-0 |D s |
689 | 1 | 1 | |a Maschinelles Sehen |0 (DE-588)4129594-8 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
689 | 2 | 0 | |a Mikrocomputer |0 (DE-588)4039206-5 |D s |
689 | 2 | 1 | |a Kunst |0 (DE-588)4114333-4 |D s |
689 | 2 | |8 3\p |5 DE-604 | |
689 | 3 | 0 | |a Computerkunst |0 (DE-588)4010453-9 |D s |
689 | 3 | |8 4\p |5 DE-604 | |
689 | 4 | 0 | |a Telekommunikationsnetz |0 (DE-588)4133586-7 |D s |
689 | 4 | |8 5\p |5 DE-604 | |
689 | 5 | 0 | |a Datennetz |0 (DE-588)4011130-1 |D s |
689 | 5 | |8 6\p |5 DE-604 | |
856 | 4 | 2 | |m Digitalisierung TU Muenchen |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=005282968&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-005282968 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 3\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 4\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 5\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 6\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804122393102254080 |
---|---|
adam_text | Table
of Contents
Foreword
................................................
·ν
Program Committee
...........................................vi
Auxiliary Reviewers
..........................................
ν
Invited Lecture: Future Directions for Computer Vision
.........................1
R. Ready, Robotics Institute, Carnegie-Mellon University
Active Vision I
Uncertain Views
.............................................3
P. Whaite and F.P.
Ferrie
Exploratory Active Vision: Theory
...................................10
J.-Y.
Непе
and Y. Aloitnonos
Recovering Shape by Purposive Viewpoint Adjustment
.........................16
ATJV. Kutulakos and
СЯ.
Dyer
Real-Time Smooth Pursuit Tracking for a Moving Binocular Robot
...................23
D. Coombs and C. Brown
Active Photometric Stereo
.......................................29
JJ. Clark
Shape Description and Recovery
Recovering the Scaling Function of a SHGC from a Single Perspective View
..............36
M. Dhome, R.
dachet,
and
J.T. Lapreste
Recovering LSHGCs and SHGCs from Stereo
..............................42
R.C.-K. Chung andR. Nevatia
Hierarchical Decomposition and Axial Shape Description
........................49
H. Rom and G. Medioni
Smoothed Local Generalized Cones: An Axial Representation of
3D
Shapes
..............56
Y. Sato, J. Ohya, andK. Ishii
Voronoi Skeletons: Theory and Applications
..............................63
R. Ogniewicz and M. Ilg
Calibration and Pose Estimation
Computing the View Orientations of Random Projections of Asymmetric Objects
............71
PX>. Lauren andN. Nandhakumar
Absolute Orientation from Uncertain Point Data: A Unified Approach
..................77
Y. Hel-Or and M. Werman
From Accurate Range Imaging Sensor Calibration to Accurate Model-Based
3D
Object Localization
..........................................83
G. Champleboux, S. Lavallee, R. Szeliski, andL.
Brunie
CCD
Camera Calibration and Noise Estimation
.............................90
G. Healey andR. Kondepudy
Accurate Calibration of CCD-Cameras
.................................96
HA. Beyer
Invariants
Parameterizing and Fitting Bounded Algebraic Curves and Surfaces
..................103
G.
Taubin, F.
СШегтап,
S. Sullivan,
J.
Ponce, and
DJ. Kriegman
Efficient
Model Library
Access
by
Projectively Invariant
Indexing Functions.............
109
CA. Rothwell,
A.
Ssserman,
J L. Mundy, and D
A. Forsyth
Noise-Resistant
Projective
and
Affine Invariants............................
115
I. Weiss
Some Invariant Linear Methods in Photogrammetry and Model-Matching
...............122
ЕЯ.
Barrett,
МЛ.
Brill, NJV.
Haag,
and P.M. Payton
Recognition of Motion from Temporal Texture
.............................129
R.
Polana
and
R.C.
Nelson
Active Vision II
Active Object Recognition
.......................................136
D. Wilkes andJJC. Tsotsos
Task Specific Utility in a General
Bayes
Net Vision System
......................142
RX>. Rimey and CM. Brown
Visual Motion Analysis under Interceptive Behavior
..........................148
R. Sharma and Y. Aloimonos
Recognizing Assembly Tasks Using Face-Contact Relations
......................154
K. Ikeuchi and T. Suehiro
Handwriting and Neural Networks
Recovery of Temporal Infoirmation from Static Images of Handwriting
................162
D.S.
Doermann and A.
Rosenfeld
Handprinted Digit Recognition Using
Spatiotemporal
Connectionist Models
..............169
Γ.
Fontaine andL. Shastri
Handwritten Numeral Recognition Based on Hierarchically Self-Organizing
Learning Networks
..............................,...........176
S. Lee and J.C.Pan
Classification Trees with Neural Network Feature Extraction
......................183
H. Guo and SJB. Gelfand
Panel: Challenges in Computer Vision: Future Research Directions
..................189
5.
Negahdaripour
andAJĹ.
Jain
Invited Lecture: Biological Image Representation and Visuo-Motor Control
.............200
K.
Schulten,
Beckman
Institute, University of Illinois at Urbana-Champaign
Motion Sequences and Optical Flow
Vision-Based Range Estimation Using Helicopter Flight Data
.....................202
fJV. Smith, B. Sridhar, andB. Hussien
3D
Model Acquisition from Monocular Image Sequences
.......................209
R. Kumar, H.S. Sawhney, andAM. Hanson
Image Sequence Enhancement Using Multiple Motions Analysis
...................216
M. Irani and
S. Pele g
їх
Point Conespondence
Recovery in
Nonrigid Motion..........................222
С.
Kambhamettu
and
DB. Goldgof
Simple Direct Computation of the FOE with Confidence Measures
...................228
S. Negahdaripour and V. Ganesan
Performance of Optical Flow Techniques
...............................236
JJL.
Barron, DJ.
Fleet,
S.S.
Beauchemin, and
ТА.
Burlati
Perceptual Organization and Curve Description
Constructing Perceptual Categories
..................................244
J. Feldman
Perceptual Organization Using Bayesian Networks
..........................251
S.
Särkar
and
KL. Boyer
labeling of Curvilinear Structure across Scales by Token Grouping
..................
2S7
E. Sound
Computing Curvilinear Structure by Token-Based Grouping
......................264
J. Dolan and E. Riseman
Multi-Resolution Shape Description by Corners
............................271
С
Fermuller and W. Kropatsch
Local Reproducible Smoothing without Shrinkage
...........................277
J. Oliensis
Shape from Texture/Focus
Shape from Periodic Texture Using the Spectrogram
..........................284
/. Krumm
and
ЅЛ.
Shafer
Shape from Texture Using Markov Random Field Models and Stereo Windows
............290
MA.
Patel
and F.S. Cohen
Shape-from-Texture by Wavelet-Based Measurement of Local Spectral Moments
...........296
BJ. Super and
A.C.
Bovik
Shape from Focus System
.......................................302
SX.
Nayar
Robust Focus Ranging
.........................................309
НИ.
Nair and
C.V.
Stewart
Object Recognition
Recognizing
3D
Objects from 2D Images: An Error Analysis
.....................316
W£. Grimson, D.P. Huttenlocher, and TJ). Alter
Saliencies and Symmetries: Toward
3D
Object Recognition from Large Model Databases
.......322
PJ. Flynn
Matching Complex Images to Multiple
3D
Objects Using View Description Networks
.........328
J£. Burns and EM. Riseman
The Scale Space Aspect Graph
....................................335
D.W.
Eggert, K.W. Bowyer,
СЯ.
Dyer, HJ. Christensen, andDB. Goldgof
The Alignment of Objects with Smooth Surfaces: Error Analysis of the Curvature Method
.......341
R.Basri
Range Images
Multi-Resolution Surface Modeling from Multiple Range Views
....................348
M. Soucy and D. Laurendeau
From Partial Derivatives of
3D
Density Images to Ridge Lines
.....................354
O. Monga,
S.
Benayoun, and
OD.
Faugeras
3D
Landmark Recognition from Range Images
............................360
M
. Hebert
An Information Theoretic Robust Sequential Procedure for Surface Model Order Selection in
Noisy Range Data
...........................................366
M
J.
Mina
and
KL. Boyer
Applications
A Feature-Based Approach to Face Recognition
............................373
B.S. Manjunath, R. Chellappa, and
С
Von Der Malsburg
Recognizing
Human
Action in Time-Sequential
Images
Using Hidden Markov Model
.........379
J. Yamato, J. Ohya, andK. Ishii
An Object-Oriented Approach to Template Guided Visual Inspection
.................386
JJL. Mundy, A. Noble,
С
Marinos,
VJD. Nguyen, A. Heller, J. Farley,
and A.T.
Tran
Visual Inspection of Machined Parts
..................................393
ВЯ.
Modayur, L.G. Shapiro, and
RM.
Horaliek
Non-Rigid Heart Wall Motion Using MR Tagging
...........................399
A. Young andL. Axel
Invited Lecture: Development and Applications of a Low-Cost, Space-Variant Active
Vision System
.............................................405
E. Schwartz,
Courant
Institute of Mathematical Sciences and Medical School,
New York University
Report: A Report on DARPA s Image Understanding Environment Project
..............406
J. Mundy, T. Binford, T. Boult, A. Hanson, R.
Beveridge,
R. Haralick,
V. Rarnesh,
С
Kohl,
D. Lawton, D. Morgan, K. Price, and T.
Strat
Navigation and Recognition
Affine
Trackability Aids Obstacle Detection
..............................418
H.S. Sawhney and
АЯ.
Hanson
Direct Motion Stereo for Passive Navigation
..............................425
S. Negandaripour,
N.
Kolagani, andB. Hayashi
Hybrid Weak-Perspective and Full-Perspective Matching
.......................432
/J?.
Beveridge
and EM. Riseman
Space Efficient
3D
Model Indexing
..................................439
D.W.
Jacobs
Fast Recognition Using Adaptive Subdivisions of Transformation Space
................445
TM. Breuel
Xl
Shape from Shading/Photometric Stereo
Direct Method for Reconstructing Shape from Shading
.........................453
P.
Dupiäs
and
J.
Oliensis
A Simple Algorithm for Shape from Shading
..............................459
M. Bichsel and AT. Pentland
Extracting the Shape and Roughness of Specular Lobe Objects Using Four-Light
Photometric Stereo
..........................................466
F. Solomon andK. Ikeuchi
Diffuse Reflection
...........................................472
L£. Wolff
Shape Reconstruction from Photometric Stereo
............................479
KM.LeeandC.-CJ.Kuo
Stereo
Refinement of Disparity Estimates through the Fusion of Monocular Image Segmentations
.......486
DM. McKeown and
F f.
Perlant
Surface Segmentation from Stereo
...................................493
L.-H. Chen and W.-C. Lin
Multi-Primitive Hierarchical (MPH) Stereo System
..........................499
S£. Marapane and MM. Trivedi
A Bayesian Treatment of the Stereo Correspondence Problem Using Half-Occluded Regions
......506
PJV.
Belhumeur
and D. Mumford
Hierarchical Waveform Matching: A New Feature-Based Stereo Technique
.............. 513
DM. McKeown and Y.C. Hsieh
Statistical Models for Low-Level Vision
Random Perturbation Models and Performance Characterization in Computer Vision
..........521
V. Ramesh and
RM.
Horaliek
Parameter Estimation in MRF Line Process Models
..........................528
S.G. Nadabar andAX. Jain
A Deformable Region Model Using Stochastic Processes Applied to
Echocardiographic Images
.......................................534
IL.
Herlin, C. Nguyen, and C. Graffigne
Robust Statistics in Shape Fitting
...................................540
A. Stein and M. Werman
Detecting Parameterized Curve Segments Using
MDL
and the Hough Transform
...........547
J. Sheinvald, B.
Dom, W.
Niblack, and S.
Baner
jee
Morphology
Predicting Expected Grey Level Statistics of Opened Signals
.....................554
W. Swan Costa and
RM. Haralick
Recursive Opening Transform
.....................................560
RM.
Haralick, S. Chen, and T. Kanungo
Morphological Structuring Function Decomposition
..........................566
X. Zhuang
Nonlinear Multiscale Filtering Using Mathematical Morphology
....................572
A. Morales andR. Acharya
Optimal Nonlinear Pattern Restoration from Noisy Binary Images
...................579
D.
Schonfeld
Segmentation
Properties of Energy Edge Detectors
..................................586
P.
Kube
Deformable Models for
3D
Medical Images Using Finite Elements and Balloons
............592
LD. Cohen and I. Cohen
Anatomy of a Color Histogram
....................................599
CJL. Novak and
ЅЛ.
Shafer
Shadow Identification
.........................................606
С
Jiang and M.O. Ward
Image Segmentation via Edge Contour Finding: A Graph Theoretic Approach
.............613
Z. Wu andR. Leahy
Poster Session
1
Analysis of the Least Median of Squares Estimator for Computer Vision Applications
.........621
D. Mintz, P.
Meer,
and
Α.
Rosenfeld
Spatial Reasoning Based on Multivariate Belief Functions
.......................624
S.-Y. Chen, W.-C. Lin, and
C
-Т.
Chen
Morphological Decomposition of Restricted Domains: A Vector Space Solution
............627
T. Kanungo and
RM. Haralick
Edge Detection in Range Images through Morphological Residue Analysis
...............630
R. Krishnapuram and S. Gupta
Morphological Grayscale Reconstruction: Definition, Efficient Algorithms, and Applications in
Image Analysis
............................................633
L. Vincent
Model Based Region Segmentation Using Co-occurrence Matrices
...................636
5.
Homélie
and G. Giraudon
Geometric Primitive Extraction Using a Genetic Algorithm
......................640
G. Roth and MD.
Levine
Segmentation by Nonlinear Diffusion, II
................................644
J. Shah
Geometric Image Primitives by Complex Moments in
Gabor
Space
................. . 648
J. Bigun and JM. Hans
du Buf
Robust Consensus Based Edge Detection
...............................651
D. Mintz
Comparing Images Using the Hausdorff Distance under Translation
..................654
DJ3.
Huttenlocher, WJ. Rucklidge, and
G A. Klanderman
Range Image Segmentation and Fitting by Residual Consensus
....................
j657
X. Yu, TD. Bui, and
A. Krzyżak
Mullifractals, Texture, and Image Analysis
...............................661
JL. Vehel, P. Mignot, andJ.-P. Berroir
A Geometric Approach to Machine-Printed Character Recognition
...................665
L. Wang and T. Pavlidis
Ш
Offline
Handwritten Word Recognition (HWR) Using a Single Contextual Hidden
Maikov Model
............................................669
M.-Y. Chen. A. Kundu, andJ. Thou
Vector Field Analysis for Oriented Patterns
..............................673
C.-F. Shu andR.C. Jain
On Texture in Document Images
....................................677
A.K. Jain,
SX.
Bhattacharjee, and Y. Chen
Neural Network Models for Illusory Contour Perception
........................681
J.
Skrzypek
and B. Ringer
Correcting Chromatic Aberrations Using Image Warping
........................684
TE.
Boult and G. Wolberg
Object Segmentation and Binding within a Biologically-Based Neural Network Model of Depth-
from-Occlusion
............................................688
P. Sajda andLM.
Finkel
Right Straight Homogeneous Generalized Cylinders with Symmetrical Cross-Sections: Recovery
of Pose and Shape from Image Contours
................................692
G. Xu, H.T. Tanaka, and S. Tsuji
On Finding the Ends of Straight Homogeneous Generalized Cylinders
.................695
H. Sato and
Т.О.
Binford
Recovery of Hierarchical Part Structure of
3D
Shape from Range Image
................699
Y. Sato, J. Ohya, andK. Ishii
A Measure of Symmetry Based on Shape Similarity
..........................703
H. Zabrodsky, S. Peleg, andD. Avnir
Poster Session
2
3D
Shape and Light Source Location from Depth and Reflectance
...................707
TA.
Mancim,
and L£. Wolff
Controlling Illumination Color to Enhance Object Discriminability
...................710
M. Vriesenga, G. Healey, K. Peleg, and]. Sklansky
Qualitative Shape from Active Shading
................................713
M.S.
Langer
and
S.W. Zucker
Local Shape Approximation from Shading
...............................716
D.
Weinshall
Curved Contours and Surface Recognition
...............................719
E. Arbogast andR. Mohr
3D
Recognition and Shape Estimation from Image Contours Using Invariant
3D
Object
Curve Models
.............................................722
F.S. Cohen and J.-Y.Wang
Weak Lambertian Assumption for Determining Cylindrical Shape and Pose from Shading
and Contour
..............................................726
M.
Asada,
T.
Nakamura, and
Y. Shircú
Recovery of
3D
Objects with Multiple Curved Surfaces from 2D Contours
...............730
F. Ulupinar andR. Nevatia
A Fast Linear Shape from Shading
...................................734
P.S.
Tsai and M. Shah
Low Resolution Cues for Guiding Saccadic Eye Movements
......................737
MJ. Swain,
R
£. Kahn,
and DM.
Ballard
The Geometry of Visual Interception
.................................
74I
L. Huang and Y. Aloimonos
Autonomous Fixation
.........................................744
MA. Taalebinezhaad
Kinematic Calibration of an Active Camera System
..........................748
G.-S. Young, T.-H. Hong, M. Herman, andJ.CS. Yang
Single Plane Model Extension Using
Projective
Transformations and Data Fusion
...........752
R.T. Collins
Accuracy Assessment on Camera Calibration Method not Considering Lens Distortion
.........755
S.-W. Shin, Y.-P. Hung, and W.-S.
Un
Computing Stereo Correspondences in the Presence of Narrow Occluding Objects
...........758
Í
/Я.
D
hond
and
JK. Aggarwal
Stereo from Uncalibrated Cameras
...................................761
R. Hartley, R. Gupta, and T. Chang
Toward Stochastic Modeling of Obstacle Detectability in Passive Stereo Range Imagery
........765
L. Matthies
On the Derivation of Geometric Constraints in Stereo
.........................769
C.V.
Stewart
Depth from
Defocus
and Rapid Autofocusing: A Practical Approach
..................773
M. Subbarao and T.-C. Wei
Verifying and Combining Different Visual Cues into a
3D
Model
...................777
J.Y. Zheng andF. Kishino
Computational Ground and Airborne Localization over Rough Terrain
.................781
У.
Yacoob andL. Davis
A New
3D
Surface Measurement System Using a Structured Light
...................784
L. Guisser, R. Payrissat, and S.
Castan
Iterative TIN Generation from Digital Elevation Models
........................787
MF.
Polis
and DM. McKeown
Poster Session
3
Robust Object Recognition Based on Implicit Algebraic Curves and Surfaces
.............791
D. Keren, J. Subrahmonia, andDB. Cooper
Indexing Function-Based Categories for Generic Recognition
.....................795
L. Stark and K. Bowyer
Contour Maching Using Local
Affine
Transformations
.........................798
I A. Bachelder and S.
Ullman
Computing Occlusion-Free Viewpoints
................................802
K. Tarabinis andR.Y. Tsai
Face Recognition Based on Depth and Curvature Features
.......................808
G.G.
Gordon
Model Indexing: The Graph-Hashing Approach
............................811
H.
Sossa
and
R. Hor
aud
Surface Reconstruction Using Neural Networks
............................815
D.S.
Chen, R.C. Jain, andB.G. Schunck
Towards Object-Based Heuristics
...................................818
AD. Gross
Determination of the Apparent Boundary of an Object
.........................822
S.Y. Liu-Yu andM. Thonnat
Generating Connected Skeletons for Exact and Approximate Reconstruction
..............826
W. Niblack, P£. Gibbons, andD. Capson
xv
Adaptive
Meshes and Sheik: Irregular
Triangulation,
Discontinuities, and
Hierarchical Subdivision
........................................829
M. Vasilescu andD. Terzopoulos
Adaptive-Size Physically-Based Models for Nonrigid Motion Analysis
.................833
W.-C. Huang andD
В
.
Goldgof
Refinement of Noisy Correspondence Using Feedback from
3D
Motion
................836
Y.C.Kim and K. Price
Motion Trajectories
..........................................839
M. Shah, K. Rangarajan, and
P.S.
Tsai
An Heterogeneous M-SIMD Architecture for
Kalman
Filter Controlled Processing of
Image Sequences
...........................................842
вЯ.
Nudd, TJ. Atherton, and
DJ. Kerbyson
Multiple Motions from Instantaneous Frequency
............................846
K. Langley,
DJ.
Fleet, and TJ. Atherton
Spatial-Quefrency Approach to Optical Echo Analysis
.........................850
E. Bandari and J. Little
A MRF Approach to Optical Flow Estimation
.............................853
JA. VlontzosandD. Geiger
On
Poisson
Solvers and Semi-Direct Methods for Computing Area-Based Optical Flow
........857
AX. Chhabra and
TA. Grogan
A Sequential Detection Framework for Feature Tracking within Computational Constraints
......861
HS.
Richardson and
SD. Biostein
Towards a General Framework for Feature Extraction
.........................865
T. Moons, EJ. Pauwels, L. Van Gool, and A. Oosterlinck
Author Index
.............................................869
|
any_adam_object | 1 |
author_corporate | Conference on Computer Vision and Pattern Recognition Champaign, Ill |
author_corporate_role | aut |
author_facet | Conference on Computer Vision and Pattern Recognition Champaign, Ill |
author_sort | Conference on Computer Vision and Pattern Recognition Champaign, Ill |
building | Verbundindex |
bvnumber | BV008028724 |
callnumber-first | T - Technology |
callnumber-label | TA1632 |
callnumber-raw | TA1632 |
callnumber-search | TA1632 |
callnumber-sort | TA 41632 |
callnumber-subject | TA - General and Civil Engineering |
classification_tum | DAT 776f DAT 764f |
ctrlnum | (OCoLC)26491917 (DE-599)BVBBV008028724 |
dewey-full | 006.3/7 |
dewey-hundreds | 000 - Computer science, information, general works |
dewey-ones | 006 - Special computer methods |
dewey-raw | 006.3/7 |
dewey-search | 006.3/7 |
dewey-sort | 16.3 17 |
dewey-tens | 000 - Computer science, information, general works |
discipline | Informatik |
format | Conference Proceeding Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03120nam a2200697 c 4500</leader><controlfield tag="001">BV008028724</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">930713s1992 ad|| |||| 10||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0818628553</subfield><subfield code="9">0-8186-2855-3</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)26491917</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV008028724</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91G</subfield><subfield code="a">DE-83</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TA1632</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">006.3/7</subfield><subfield code="2">20</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">DAT 776f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">DAT 764f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="111" ind1="2" ind2=" "><subfield code="a">Conference on Computer Vision and Pattern Recognition</subfield><subfield code="d">1992</subfield><subfield code="c">Champaign, Ill.</subfield><subfield code="j">Verfasser</subfield><subfield code="0">(DE-588)5084380-1</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Proceedings</subfield><subfield code="b">June 15 - 18, 1992, Champaign, Ill.</subfield><subfield code="c">1992 IEEE Computer Vision Society Conference on Computer Vision and Pattern Recognition</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Los Alamitos, Calif.</subfield><subfield code="b">IEEE Computer Soc. Press</subfield><subfield code="c">1992</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XVI, 870 S.</subfield><subfield code="b">Ill. u. graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computer vision</subfield><subfield code="v">Congresses</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Pattern recognition systems</subfield><subfield code="v">Congresses</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mustererkennung</subfield><subfield code="0">(DE-588)4040936-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Datennetz</subfield><subfield code="0">(DE-588)4011130-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Kunst</subfield><subfield code="0">(DE-588)4114333-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Telekommunikationsnetz</subfield><subfield code="0">(DE-588)4133586-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Computerkunst</subfield><subfield code="0">(DE-588)4010453-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Maschinelles Sehen</subfield><subfield code="0">(DE-588)4129594-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mikrocomputer</subfield><subfield code="0">(DE-588)4039206-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Bildverstehen</subfield><subfield code="0">(DE-588)4202022-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="0">(DE-588)1071861417</subfield><subfield code="a">Konferenzschrift</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Maschinelles Sehen</subfield><subfield code="0">(DE-588)4129594-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Mustererkennung</subfield><subfield code="0">(DE-588)4040936-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Bildverstehen</subfield><subfield code="0">(DE-588)4202022-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Maschinelles Sehen</subfield><subfield code="0">(DE-588)4129594-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Mikrocomputer</subfield><subfield code="0">(DE-588)4039206-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2="1"><subfield code="a">Kunst</subfield><subfield code="0">(DE-588)4114333-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="8">3\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="3" ind2="0"><subfield code="a">Computerkunst</subfield><subfield code="0">(DE-588)4010453-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="3" ind2=" "><subfield code="8">4\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="4" ind2="0"><subfield code="a">Telekommunikationsnetz</subfield><subfield code="0">(DE-588)4133586-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="4" ind2=" "><subfield code="8">5\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="5" ind2="0"><subfield code="a">Datennetz</subfield><subfield code="0">(DE-588)4011130-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="5" ind2=" "><subfield code="8">6\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung TU Muenchen</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=005282968&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-005282968</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">3\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">4\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">5\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">6\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
genre | (DE-588)1071861417 Konferenzschrift gnd-content |
genre_facet | Konferenzschrift |
id | DE-604.BV008028724 |
illustrated | Illustrated |
indexdate | 2024-07-09T17:13:09Z |
institution | BVB |
institution_GND | (DE-588)5084380-1 |
isbn | 0818628553 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-005282968 |
oclc_num | 26491917 |
open_access_boolean | |
owner | DE-91G DE-BY-TUM DE-83 |
owner_facet | DE-91G DE-BY-TUM DE-83 |
physical | XVI, 870 S. Ill. u. graph. Darst. |
publishDate | 1992 |
publishDateSearch | 1992 |
publishDateSort | 1992 |
publisher | IEEE Computer Soc. Press |
record_format | marc |
spelling | Conference on Computer Vision and Pattern Recognition 1992 Champaign, Ill. Verfasser (DE-588)5084380-1 aut Proceedings June 15 - 18, 1992, Champaign, Ill. 1992 IEEE Computer Vision Society Conference on Computer Vision and Pattern Recognition Los Alamitos, Calif. IEEE Computer Soc. Press 1992 XVI, 870 S. Ill. u. graph. Darst. txt rdacontent n rdamedia nc rdacarrier Computer vision Congresses Pattern recognition systems Congresses Mustererkennung (DE-588)4040936-3 gnd rswk-swf Datennetz (DE-588)4011130-1 gnd rswk-swf Kunst (DE-588)4114333-4 gnd rswk-swf Telekommunikationsnetz (DE-588)4133586-7 gnd rswk-swf Computerkunst (DE-588)4010453-9 gnd rswk-swf Maschinelles Sehen (DE-588)4129594-8 gnd rswk-swf Mikrocomputer (DE-588)4039206-5 gnd rswk-swf Bildverstehen (DE-588)4202022-0 gnd rswk-swf (DE-588)1071861417 Konferenzschrift gnd-content Maschinelles Sehen (DE-588)4129594-8 s Mustererkennung (DE-588)4040936-3 s 1\p DE-604 Bildverstehen (DE-588)4202022-0 s 2\p DE-604 Mikrocomputer (DE-588)4039206-5 s Kunst (DE-588)4114333-4 s 3\p DE-604 Computerkunst (DE-588)4010453-9 s 4\p DE-604 Telekommunikationsnetz (DE-588)4133586-7 s 5\p DE-604 Datennetz (DE-588)4011130-1 s 6\p DE-604 Digitalisierung TU Muenchen application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=005282968&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 3\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 4\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 5\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 6\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Proceedings June 15 - 18, 1992, Champaign, Ill. Computer vision Congresses Pattern recognition systems Congresses Mustererkennung (DE-588)4040936-3 gnd Datennetz (DE-588)4011130-1 gnd Kunst (DE-588)4114333-4 gnd Telekommunikationsnetz (DE-588)4133586-7 gnd Computerkunst (DE-588)4010453-9 gnd Maschinelles Sehen (DE-588)4129594-8 gnd Mikrocomputer (DE-588)4039206-5 gnd Bildverstehen (DE-588)4202022-0 gnd |
subject_GND | (DE-588)4040936-3 (DE-588)4011130-1 (DE-588)4114333-4 (DE-588)4133586-7 (DE-588)4010453-9 (DE-588)4129594-8 (DE-588)4039206-5 (DE-588)4202022-0 (DE-588)1071861417 |
title | Proceedings June 15 - 18, 1992, Champaign, Ill. |
title_auth | Proceedings June 15 - 18, 1992, Champaign, Ill. |
title_exact_search | Proceedings June 15 - 18, 1992, Champaign, Ill. |
title_full | Proceedings June 15 - 18, 1992, Champaign, Ill. 1992 IEEE Computer Vision Society Conference on Computer Vision and Pattern Recognition |
title_fullStr | Proceedings June 15 - 18, 1992, Champaign, Ill. 1992 IEEE Computer Vision Society Conference on Computer Vision and Pattern Recognition |
title_full_unstemmed | Proceedings June 15 - 18, 1992, Champaign, Ill. 1992 IEEE Computer Vision Society Conference on Computer Vision and Pattern Recognition |
title_short | Proceedings |
title_sort | proceedings june 15 18 1992 champaign ill |
title_sub | June 15 - 18, 1992, Champaign, Ill. |
topic | Computer vision Congresses Pattern recognition systems Congresses Mustererkennung (DE-588)4040936-3 gnd Datennetz (DE-588)4011130-1 gnd Kunst (DE-588)4114333-4 gnd Telekommunikationsnetz (DE-588)4133586-7 gnd Computerkunst (DE-588)4010453-9 gnd Maschinelles Sehen (DE-588)4129594-8 gnd Mikrocomputer (DE-588)4039206-5 gnd Bildverstehen (DE-588)4202022-0 gnd |
topic_facet | Computer vision Congresses Pattern recognition systems Congresses Mustererkennung Datennetz Kunst Telekommunikationsnetz Computerkunst Maschinelles Sehen Mikrocomputer Bildverstehen Konferenzschrift |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=005282968&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT conferenceoncomputervisionandpatternrecognitionchampaignill proceedingsjune15181992champaignill |