Neural network perception for mobile robot guidance:
Abstract: "Vision based mobile robot guidance has proven difficult for classical machine vision methods because of the diversity and real time constraints inherent in the task. This thesis describes a connectionist system called ALVINN (Autonomous Land Vehicle In a Neural Network) that overcome...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Pittsburgh, Pa.
1992
|
Schlagworte: | |
Zusammenfassung: | Abstract: "Vision based mobile robot guidance has proven difficult for classical machine vision methods because of the diversity and real time constraints inherent in the task. This thesis describes a connectionist system called ALVINN (Autonomous Land Vehicle In a Neural Network) that overcomes these difficulties. ALVINN learns to guide mobile robots using the back-propagation training algorithm. Because of its ability to learn from example, ALVINN can adapt to new situations and therefore cope with the diversity of the autonomous navigation task. But real world problems like vision based mobile robot guidance presents a different set of challenges for the connectionist paradigm Among them are: How to develop a general representation from a limited amount of real training data, How to understand the internal representations developed by artificial neural networks, How to estimate the reliability of individual networks, How to combine multiple networks trained for different situations into a single system, How to combine connectionist perception with symbolic reasoning. This thesis presents novel solutions to each of these problems. Using these techniques, the ALVINN system can learn to control an autonomous van in under 5 minutes by watching a person drive Once trained, individual ALVINN networks can drive in a variety of circumstances, including single-lane paved and unpaved roads, and multi- lane lined and unlined roads, at speeds of up to 55 miles per hour. The techniques also are shown to generalize to the task of controlling the precise foot placement of a walking robot. |
Beschreibung: | Zugl.: Pittsburgh, Pa., Carnegie Mellon Univ., Diss., 1992 |
Beschreibung: | V, 207 S. Ill. u. graph. Darst. |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV008028565 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | t | ||
008 | 930713s1992 ad|| m||| 00||| eng d | ||
035 | |a (OCoLC)26241918 | ||
035 | |a (DE-599)BVBBV008028565 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
082 | 0 | |a 510.7808 |b C28r 92-115 | |
084 | |a ZQ 6250 |0 (DE-625)158184: |2 rvk | ||
084 | |a DAT 717d |2 stub | ||
084 | |a DAT 815d |2 stub | ||
084 | |a FER 986d |2 stub | ||
088 | |a CMU CS 92 115 | ||
100 | 1 | |a Pomerleau, Dean A. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Neural network perception for mobile robot guidance |
246 | 1 | 3 | |a CMU CS 92 115 |
264 | 1 | |a Pittsburgh, Pa. |c 1992 | |
300 | |a V, 207 S. |b Ill. u. graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
500 | |a Zugl.: Pittsburgh, Pa., Carnegie Mellon Univ., Diss., 1992 | ||
520 | 3 | |a Abstract: "Vision based mobile robot guidance has proven difficult for classical machine vision methods because of the diversity and real time constraints inherent in the task. This thesis describes a connectionist system called ALVINN (Autonomous Land Vehicle In a Neural Network) that overcomes these difficulties. ALVINN learns to guide mobile robots using the back-propagation training algorithm. Because of its ability to learn from example, ALVINN can adapt to new situations and therefore cope with the diversity of the autonomous navigation task. But real world problems like vision based mobile robot guidance presents a different set of challenges for the connectionist paradigm | |
520 | 3 | |a Among them are: How to develop a general representation from a limited amount of real training data, How to understand the internal representations developed by artificial neural networks, How to estimate the reliability of individual networks, How to combine multiple networks trained for different situations into a single system, How to combine connectionist perception with symbolic reasoning. This thesis presents novel solutions to each of these problems. Using these techniques, the ALVINN system can learn to control an autonomous van in under 5 minutes by watching a person drive | |
520 | 3 | |a Once trained, individual ALVINN networks can drive in a variety of circumstances, including single-lane paved and unpaved roads, and multi- lane lined and unlined roads, at speeds of up to 55 miles per hour. The techniques also are shown to generalize to the task of controlling the precise foot placement of a walking robot. | |
650 | 4 | |a Mobile robots | |
650 | 4 | |a Neural networks (Computer science) | |
650 | 4 | |a Robot vision | |
650 | 0 | 7 | |a Roboter |0 (DE-588)4050208-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Neuronales Netz |0 (DE-588)4226127-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Mobiler Roboter |0 (DE-588)4191911-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Maschinelles Sehen |0 (DE-588)4129594-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Steuerung |0 (DE-588)4057472-6 |2 gnd |9 rswk-swf |
655 | 7 | |0 (DE-588)4113937-9 |a Hochschulschrift |2 gnd-content | |
689 | 0 | 0 | |a Neuronales Netz |0 (DE-588)4226127-2 |D s |
689 | 0 | 1 | |a Mobiler Roboter |0 (DE-588)4191911-7 |D s |
689 | 0 | 2 | |a Steuerung |0 (DE-588)4057472-6 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Neuronales Netz |0 (DE-588)4226127-2 |D s |
689 | 1 | 1 | |a Maschinelles Sehen |0 (DE-588)4129594-8 |D s |
689 | 1 | 2 | |a Roboter |0 (DE-588)4050208-9 |D s |
689 | 1 | |8 1\p |5 DE-604 | |
999 | |a oai:aleph.bib-bvb.de:BVB01-005282844 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804122392901976064 |
---|---|
any_adam_object | |
author | Pomerleau, Dean A. |
author_facet | Pomerleau, Dean A. |
author_role | aut |
author_sort | Pomerleau, Dean A. |
author_variant | d a p da dap |
building | Verbundindex |
bvnumber | BV008028565 |
classification_rvk | ZQ 6250 |
classification_tum | DAT 717d DAT 815d FER 986d |
ctrlnum | (OCoLC)26241918 (DE-599)BVBBV008028565 |
dewey-full | 510.7808 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 510 - Mathematics |
dewey-raw | 510.7808 |
dewey-search | 510.7808 |
dewey-sort | 3510.7808 |
dewey-tens | 510 - Mathematics |
discipline | Informatik Mathematik Fertigungstechnik Mess-/Steuerungs-/Regelungs-/Automatisierungstechnik / Mechatronik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03550nam a2200577 c 4500</leader><controlfield tag="001">BV008028565</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">930713s1992 ad|| m||| 00||| eng d</controlfield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)26241918</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV008028565</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">510.7808</subfield><subfield code="b">C28r 92-115</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ZQ 6250</subfield><subfield code="0">(DE-625)158184:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">DAT 717d</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">DAT 815d</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">FER 986d</subfield><subfield code="2">stub</subfield></datafield><datafield tag="088" ind1=" " ind2=" "><subfield code="a">CMU CS 92 115</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Pomerleau, Dean A.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Neural network perception for mobile robot guidance</subfield></datafield><datafield tag="246" ind1="1" ind2="3"><subfield code="a">CMU CS 92 115</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Pittsburgh, Pa.</subfield><subfield code="c">1992</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">V, 207 S.</subfield><subfield code="b">Ill. u. graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Zugl.: Pittsburgh, Pa., Carnegie Mellon Univ., Diss., 1992</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">Abstract: "Vision based mobile robot guidance has proven difficult for classical machine vision methods because of the diversity and real time constraints inherent in the task. This thesis describes a connectionist system called ALVINN (Autonomous Land Vehicle In a Neural Network) that overcomes these difficulties. ALVINN learns to guide mobile robots using the back-propagation training algorithm. Because of its ability to learn from example, ALVINN can adapt to new situations and therefore cope with the diversity of the autonomous navigation task. But real world problems like vision based mobile robot guidance presents a different set of challenges for the connectionist paradigm</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">Among them are: How to develop a general representation from a limited amount of real training data, How to understand the internal representations developed by artificial neural networks, How to estimate the reliability of individual networks, How to combine multiple networks trained for different situations into a single system, How to combine connectionist perception with symbolic reasoning. This thesis presents novel solutions to each of these problems. Using these techniques, the ALVINN system can learn to control an autonomous van in under 5 minutes by watching a person drive</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">Once trained, individual ALVINN networks can drive in a variety of circumstances, including single-lane paved and unpaved roads, and multi- lane lined and unlined roads, at speeds of up to 55 miles per hour. The techniques also are shown to generalize to the task of controlling the precise foot placement of a walking robot.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mobile robots</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Neural networks (Computer science)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Robot vision</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Roboter</subfield><subfield code="0">(DE-588)4050208-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Neuronales Netz</subfield><subfield code="0">(DE-588)4226127-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mobiler Roboter</subfield><subfield code="0">(DE-588)4191911-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Maschinelles Sehen</subfield><subfield code="0">(DE-588)4129594-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Steuerung</subfield><subfield code="0">(DE-588)4057472-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="0">(DE-588)4113937-9</subfield><subfield code="a">Hochschulschrift</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Neuronales Netz</subfield><subfield code="0">(DE-588)4226127-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Mobiler Roboter</subfield><subfield code="0">(DE-588)4191911-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Steuerung</subfield><subfield code="0">(DE-588)4057472-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Neuronales Netz</subfield><subfield code="0">(DE-588)4226127-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Maschinelles Sehen</subfield><subfield code="0">(DE-588)4129594-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="2"><subfield code="a">Roboter</subfield><subfield code="0">(DE-588)4050208-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-005282844</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
genre | (DE-588)4113937-9 Hochschulschrift gnd-content |
genre_facet | Hochschulschrift |
id | DE-604.BV008028565 |
illustrated | Illustrated |
indexdate | 2024-07-09T17:13:09Z |
institution | BVB |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-005282844 |
oclc_num | 26241918 |
open_access_boolean | |
physical | V, 207 S. Ill. u. graph. Darst. |
publishDate | 1992 |
publishDateSearch | 1992 |
publishDateSort | 1992 |
record_format | marc |
spelling | Pomerleau, Dean A. Verfasser aut Neural network perception for mobile robot guidance CMU CS 92 115 Pittsburgh, Pa. 1992 V, 207 S. Ill. u. graph. Darst. txt rdacontent n rdamedia nc rdacarrier Zugl.: Pittsburgh, Pa., Carnegie Mellon Univ., Diss., 1992 Abstract: "Vision based mobile robot guidance has proven difficult for classical machine vision methods because of the diversity and real time constraints inherent in the task. This thesis describes a connectionist system called ALVINN (Autonomous Land Vehicle In a Neural Network) that overcomes these difficulties. ALVINN learns to guide mobile robots using the back-propagation training algorithm. Because of its ability to learn from example, ALVINN can adapt to new situations and therefore cope with the diversity of the autonomous navigation task. But real world problems like vision based mobile robot guidance presents a different set of challenges for the connectionist paradigm Among them are: How to develop a general representation from a limited amount of real training data, How to understand the internal representations developed by artificial neural networks, How to estimate the reliability of individual networks, How to combine multiple networks trained for different situations into a single system, How to combine connectionist perception with symbolic reasoning. This thesis presents novel solutions to each of these problems. Using these techniques, the ALVINN system can learn to control an autonomous van in under 5 minutes by watching a person drive Once trained, individual ALVINN networks can drive in a variety of circumstances, including single-lane paved and unpaved roads, and multi- lane lined and unlined roads, at speeds of up to 55 miles per hour. The techniques also are shown to generalize to the task of controlling the precise foot placement of a walking robot. Mobile robots Neural networks (Computer science) Robot vision Roboter (DE-588)4050208-9 gnd rswk-swf Neuronales Netz (DE-588)4226127-2 gnd rswk-swf Mobiler Roboter (DE-588)4191911-7 gnd rswk-swf Maschinelles Sehen (DE-588)4129594-8 gnd rswk-swf Steuerung (DE-588)4057472-6 gnd rswk-swf (DE-588)4113937-9 Hochschulschrift gnd-content Neuronales Netz (DE-588)4226127-2 s Mobiler Roboter (DE-588)4191911-7 s Steuerung (DE-588)4057472-6 s DE-604 Maschinelles Sehen (DE-588)4129594-8 s Roboter (DE-588)4050208-9 s 1\p DE-604 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Pomerleau, Dean A. Neural network perception for mobile robot guidance Mobile robots Neural networks (Computer science) Robot vision Roboter (DE-588)4050208-9 gnd Neuronales Netz (DE-588)4226127-2 gnd Mobiler Roboter (DE-588)4191911-7 gnd Maschinelles Sehen (DE-588)4129594-8 gnd Steuerung (DE-588)4057472-6 gnd |
subject_GND | (DE-588)4050208-9 (DE-588)4226127-2 (DE-588)4191911-7 (DE-588)4129594-8 (DE-588)4057472-6 (DE-588)4113937-9 |
title | Neural network perception for mobile robot guidance |
title_alt | CMU CS 92 115 |
title_auth | Neural network perception for mobile robot guidance |
title_exact_search | Neural network perception for mobile robot guidance |
title_full | Neural network perception for mobile robot guidance |
title_fullStr | Neural network perception for mobile robot guidance |
title_full_unstemmed | Neural network perception for mobile robot guidance |
title_short | Neural network perception for mobile robot guidance |
title_sort | neural network perception for mobile robot guidance |
topic | Mobile robots Neural networks (Computer science) Robot vision Roboter (DE-588)4050208-9 gnd Neuronales Netz (DE-588)4226127-2 gnd Mobiler Roboter (DE-588)4191911-7 gnd Maschinelles Sehen (DE-588)4129594-8 gnd Steuerung (DE-588)4057472-6 gnd |
topic_facet | Mobile robots Neural networks (Computer science) Robot vision Roboter Neuronales Netz Mobiler Roboter Maschinelles Sehen Steuerung Hochschulschrift |
work_keys_str_mv | AT pomerleaudeana neuralnetworkperceptionformobilerobotguidance AT pomerleaudeana cmucs92115 |