On rings whose finitely generated cofaithful modules are generators:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
München
Fischer
1993
|
Schriftenreihe: | Algebra-Berichte
70 |
Schlagworte: | |
Beschreibung: | 38 S. |
ISBN: | 3889271286 |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV007745892 | ||
003 | DE-604 | ||
005 | 20110202 | ||
007 | t | ||
008 | 930607s1993 gw |||| 00||| eng d | ||
020 | |a 3889271286 |9 3-88927-128-6 | ||
035 | |a (OCoLC)28989988 | ||
035 | |a (DE-599)BVBBV007745892 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
044 | |a gw |c DE | ||
049 | |a DE-703 |a DE-12 |a DE-19 |a DE-83 |a DE-11 |a DE-706 | ||
050 | 0 | |a QA247 | |
082 | 0 | |a 512.4 |b L46o, 1993 |2 21 | |
084 | |a SI 120 |0 (DE-625)143081: |2 rvk | ||
084 | |a SK 230 |0 (DE-625)143225: |2 rvk | ||
084 | |a 13E15 |2 msc | ||
100 | 1 | |a Le, Van-Thuyet |e Verfasser |0 (DE-588)113446977 |4 aut | |
245 | 1 | 0 | |a On rings whose finitely generated cofaithful modules are generators |c Le Van Thuyet |
264 | 1 | |a München |b Fischer |c 1993 | |
300 | |a 38 S. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Algebra-Berichte |v 70 | |
650 | 4 | |a Modules (Algebra) | |
650 | 4 | |a Rings (Algebra) | |
650 | 0 | 7 | |a Kotreuer Modul |0 (DE-588)4493233-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Endlich erzeugter Modul |0 (DE-588)4493447-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Erzeugende |0 (DE-588)4152978-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Assoziativer Ring |0 (DE-588)4143228-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Modul |0 (DE-588)4129770-2 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Assoziativer Ring |0 (DE-588)4143228-9 |D s |
689 | 0 | 1 | |a Modul |0 (DE-588)4129770-2 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Assoziativer Ring |0 (DE-588)4143228-9 |D s |
689 | 1 | 1 | |a Erzeugende |0 (DE-588)4152978-9 |D s |
689 | 1 | 2 | |a Endlich erzeugter Modul |0 (DE-588)4493447-6 |D s |
689 | 1 | 3 | |a Kotreuer Modul |0 (DE-588)4493233-9 |D s |
689 | 1 | |5 DE-604 | |
830 | 0 | |a Algebra-Berichte |v 70 |w (DE-604)BV000010021 |9 70 | |
999 | |a oai:aleph.bib-bvb.de:BVB01-005093361 |
Datensatz im Suchindex
_version_ | 1804122119328497664 |
---|---|
any_adam_object | |
author | Le, Van-Thuyet |
author_GND | (DE-588)113446977 |
author_facet | Le, Van-Thuyet |
author_role | aut |
author_sort | Le, Van-Thuyet |
author_variant | v t l vtl |
building | Verbundindex |
bvnumber | BV007745892 |
callnumber-first | Q - Science |
callnumber-label | QA247 |
callnumber-raw | QA247 |
callnumber-search | QA247 |
callnumber-sort | QA 3247 |
callnumber-subject | QA - Mathematics |
classification_rvk | SI 120 SK 230 |
ctrlnum | (OCoLC)28989988 (DE-599)BVBBV007745892 |
dewey-full | 512.4 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 512 - Algebra |
dewey-raw | 512.4 |
dewey-search | 512.4 |
dewey-sort | 3512.4 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01819nam a2200529 cb4500</leader><controlfield tag="001">BV007745892</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20110202 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">930607s1993 gw |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3889271286</subfield><subfield code="9">3-88927-128-6</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)28989988</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV007745892</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">DE</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-703</subfield><subfield code="a">DE-12</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-83</subfield><subfield code="a">DE-11</subfield><subfield code="a">DE-706</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA247</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">512.4</subfield><subfield code="b">L46o, 1993</subfield><subfield code="2">21</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SI 120</subfield><subfield code="0">(DE-625)143081:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 230</subfield><subfield code="0">(DE-625)143225:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">13E15</subfield><subfield code="2">msc</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Le, Van-Thuyet</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)113446977</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">On rings whose finitely generated cofaithful modules are generators</subfield><subfield code="c">Le Van Thuyet</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">München</subfield><subfield code="b">Fischer</subfield><subfield code="c">1993</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">38 S.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Algebra-Berichte</subfield><subfield code="v">70</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Modules (Algebra)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Rings (Algebra)</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Kotreuer Modul</subfield><subfield code="0">(DE-588)4493233-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Endlich erzeugter Modul</subfield><subfield code="0">(DE-588)4493447-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Erzeugende</subfield><subfield code="0">(DE-588)4152978-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Assoziativer Ring</subfield><subfield code="0">(DE-588)4143228-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Modul</subfield><subfield code="0">(DE-588)4129770-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Assoziativer Ring</subfield><subfield code="0">(DE-588)4143228-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Modul</subfield><subfield code="0">(DE-588)4129770-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Assoziativer Ring</subfield><subfield code="0">(DE-588)4143228-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Erzeugende</subfield><subfield code="0">(DE-588)4152978-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="2"><subfield code="a">Endlich erzeugter Modul</subfield><subfield code="0">(DE-588)4493447-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="3"><subfield code="a">Kotreuer Modul</subfield><subfield code="0">(DE-588)4493233-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Algebra-Berichte</subfield><subfield code="v">70</subfield><subfield code="w">(DE-604)BV000010021</subfield><subfield code="9">70</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-005093361</subfield></datafield></record></collection> |
id | DE-604.BV007745892 |
illustrated | Not Illustrated |
indexdate | 2024-07-09T17:08:48Z |
institution | BVB |
isbn | 3889271286 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-005093361 |
oclc_num | 28989988 |
open_access_boolean | |
owner | DE-703 DE-12 DE-19 DE-BY-UBM DE-83 DE-11 DE-706 |
owner_facet | DE-703 DE-12 DE-19 DE-BY-UBM DE-83 DE-11 DE-706 |
physical | 38 S. |
publishDate | 1993 |
publishDateSearch | 1993 |
publishDateSort | 1993 |
publisher | Fischer |
record_format | marc |
series | Algebra-Berichte |
series2 | Algebra-Berichte |
spelling | Le, Van-Thuyet Verfasser (DE-588)113446977 aut On rings whose finitely generated cofaithful modules are generators Le Van Thuyet München Fischer 1993 38 S. txt rdacontent n rdamedia nc rdacarrier Algebra-Berichte 70 Modules (Algebra) Rings (Algebra) Kotreuer Modul (DE-588)4493233-9 gnd rswk-swf Endlich erzeugter Modul (DE-588)4493447-6 gnd rswk-swf Erzeugende (DE-588)4152978-9 gnd rswk-swf Assoziativer Ring (DE-588)4143228-9 gnd rswk-swf Modul (DE-588)4129770-2 gnd rswk-swf Assoziativer Ring (DE-588)4143228-9 s Modul (DE-588)4129770-2 s DE-604 Erzeugende (DE-588)4152978-9 s Endlich erzeugter Modul (DE-588)4493447-6 s Kotreuer Modul (DE-588)4493233-9 s Algebra-Berichte 70 (DE-604)BV000010021 70 |
spellingShingle | Le, Van-Thuyet On rings whose finitely generated cofaithful modules are generators Algebra-Berichte Modules (Algebra) Rings (Algebra) Kotreuer Modul (DE-588)4493233-9 gnd Endlich erzeugter Modul (DE-588)4493447-6 gnd Erzeugende (DE-588)4152978-9 gnd Assoziativer Ring (DE-588)4143228-9 gnd Modul (DE-588)4129770-2 gnd |
subject_GND | (DE-588)4493233-9 (DE-588)4493447-6 (DE-588)4152978-9 (DE-588)4143228-9 (DE-588)4129770-2 |
title | On rings whose finitely generated cofaithful modules are generators |
title_auth | On rings whose finitely generated cofaithful modules are generators |
title_exact_search | On rings whose finitely generated cofaithful modules are generators |
title_full | On rings whose finitely generated cofaithful modules are generators Le Van Thuyet |
title_fullStr | On rings whose finitely generated cofaithful modules are generators Le Van Thuyet |
title_full_unstemmed | On rings whose finitely generated cofaithful modules are generators Le Van Thuyet |
title_short | On rings whose finitely generated cofaithful modules are generators |
title_sort | on rings whose finitely generated cofaithful modules are generators |
topic | Modules (Algebra) Rings (Algebra) Kotreuer Modul (DE-588)4493233-9 gnd Endlich erzeugter Modul (DE-588)4493447-6 gnd Erzeugende (DE-588)4152978-9 gnd Assoziativer Ring (DE-588)4143228-9 gnd Modul (DE-588)4129770-2 gnd |
topic_facet | Modules (Algebra) Rings (Algebra) Kotreuer Modul Endlich erzeugter Modul Erzeugende Assoziativer Ring Modul |
volume_link | (DE-604)BV000010021 |
work_keys_str_mv | AT levanthuyet onringswhosefinitelygeneratedcofaithfulmodulesaregenerators |