The evolutionary biology of hearing:
Gespeichert in:
Format: | Buch |
---|---|
Sprache: | English |
Veröffentlicht: |
Berlin [u.a.]
Springer
1992
|
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | Literaturangaben |
Beschreibung: | LI, 859 S. Ill., graph. Darst. |
ISBN: | 0387975888 3540975888 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV007702044 | ||
003 | DE-604 | ||
005 | 20080312 | ||
007 | t | ||
008 | 930421s1992 ad|| |||| 10||| eng d | ||
020 | |a 0387975888 |9 0-387-97588-8 | ||
020 | |a 3540975888 |9 3-540-97588-8 | ||
035 | |a (OCoLC)231870670 | ||
035 | |a (DE-599)BVBBV007702044 | ||
040 | |a DE-604 |b ger |e rakwb | ||
041 | 0 | |a eng | |
049 | |a DE-355 |a DE-19 |a DE-12 |a DE-M49 |a DE-29T |a DE-11 |a DE-188 | ||
084 | |a WT 4500 |0 (DE-625)152001:13423 |2 rvk | ||
084 | |a WW 1660 |0 (DE-625)152060:13423 |2 rvk | ||
084 | |a BIO 745f |2 stub | ||
084 | |a BIO 782f |2 stub | ||
245 | 1 | 0 | |a The evolutionary biology of hearing |c Douglas B. Webster ... eds. |
264 | 1 | |a Berlin [u.a.] |b Springer |c 1992 | |
300 | |a LI, 859 S. |b Ill., graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
500 | |a Literaturangaben | ||
650 | 0 | 7 | |a Gehörorgan |0 (DE-588)4137367-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Evolution |0 (DE-588)4071050-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Hören |0 (DE-588)4025405-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Evolutionsbiologie |0 (DE-588)4153283-1 |2 gnd |9 rswk-swf |
655 | 7 | |0 (DE-588)1071861417 |a Konferenzschrift |y 1990 |z Sarasota Fla. |2 gnd-content | |
689 | 0 | 0 | |a Hören |0 (DE-588)4025405-7 |D s |
689 | 0 | 1 | |a Evolutionsbiologie |0 (DE-588)4153283-1 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Gehörorgan |0 (DE-588)4137367-4 |D s |
689 | 1 | 1 | |a Evolution |0 (DE-588)4071050-6 |D s |
689 | 1 | |5 DE-604 | |
689 | 2 | 0 | |a Hören |0 (DE-588)4025405-7 |D s |
689 | 2 | |5 DE-604 | |
700 | 1 | |a Webster, Douglas B. |e Sonstige |4 oth | |
856 | 4 | 2 | |m Digitalisierung TU Muenchen |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=005057524&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-005057524 |
Datensatz im Suchindex
_version_ | 1804122065661329409 |
---|---|
adam_text | Contents
Preface
...................................................... jx
Acknowledgments
............................................. xj
Contributors
................................................. xxxvii
Ernest Glen
Wever:
Biography and Bibliography
.................... xliii
Richard R. Fay
Section I Evolutionary Perspectives
Chapter
1
An Overview of the Evolutionary Biology of Hearing
....... 3
Carl Gans
Chapter
2
Comparisons of Major and Minor
Taxa
Reveal Two Kinds
of Differences: Lateral Adaptations and Vertical
Changes in Grade
.................................... 15
Theodore H. Bullock
Chapter
3
The Phylogeny of Octavolateralis Ontogenies:
A Reaffirmation
of Garstang s Phylogenetic Hypothesis
..... 21
R. Glenn Northcutt
Chapter
4
Evolution of the Vertebrate Inner Ear:
An Overview of Ideas
................................. 49
Arthur
N.
Popper, Christopher
Platt,
and Peggy L. Edds
Section II Invertebrates
Chapter
5
Hearing and Sound Communication in Small Animals:
Evolutionary Adaptations to the Laws of Physics
........... 61
Axel Michelsen
Chapter
6
Ecological Constraints for the Evolution of Hearing
and Sound Communication in Insects
.................... 79
Heiner Römer
хш
xiv Contents
Chapter
7
The Processing of Auditory Signals
in the CNS of Orthoptera
.............................. 95
Brian Lewis
Chapter
8
The Evolution of Hearing in Insects as an Adaptation
to
Prédation
from Bats
................................ 115
Ronald R. Hoy
Chapter
9
Hearing in Crustacea
.................................. 131
Bernd
U.
Budelmann
Chapter
10
Hearing of Nonarthropod Invertebrates
................... 141
Bernd
U.
Budelmann
Contributed Abstracts
A. The Mechanoreceptive Origin of Insect Tympanal Organs:
A Comparative Study of Homologous Nerves
in Tympanate and Atympanate Moths
................ 156
Jayne E.
Yack
and James H.
Fullärd
B.
Organization of the Auditory Pathway in Noctuoid Moths:
Homologous Auditory Evolution in Insects
............ 157
G.S.
Boyan,
James H.
Fullärd,
and J.L.D. Williams
C. Hearing in the Primitive Ensiferan Cyphoderris
monstrosa (Orthoperta: Haglidae)
................... 158
Andrew C. Mason and Klaus Schildberger
D. Hair Cell Sensitivity in Cephalopod Statocyst
......... 159
Roddy Williamson
Section III Aspects of Hearing Among Vertebrates
Chapter
11
Convergence of Design in Vertebrate Acoustic Sensors
...... 163
Edwin R. Lewis
Chapter
12
The Efferent
Innervation
of the Ear:
Variations on an Enigma
............................... 185
Barry L. Roberts and Gloria E. Meredith
Chapter
13
Evolution, Perception, and the Comparative Method
........ 211
William
С
Stebbins and Mitchell S.
Sommers
Chapter
14
Structure and Function in Sound Discrimination
Among Vertebrates
................................... 229
Richard R. Fay
Section IV Anamniotes
Chapter
15
Functional and Evolutionary Implications of Peripheral
Diversity in Lateral Line Systems
....................... 267
Sheryl Coombs, John
Janssen,
and John Montgomery
Contents xv
Chapter
16
Functional Aspects of the Evolution of the Auditory
System of Actinopterygian Fish
......................... 295
Nico
A.M.
Schellart
and Arthur
N.
Popper
Chapter
17
Evolution of Central Auditory Pathways in Anamniotes
...... 323
Catherine A. McCormick
Chapter
18
The Water-to-Land Transition: Evolution of the Tetrapod
Basilar
Papilla, Middle Ear, and Auditory Nuclei
........... 351
Bernd Fritzsch
Chapter
19
Nature and Quality of the Fossil Evidence of Otic
Evolution in Early
Tetrapode
........................... 377
John R. Bolt and Eric R. Lombard
Chapter
20
The Stapes of Acanthostega gunnari and the Role
of the Stapes in Early
Tetrapode
......................... 405
J.A. Clack
Chapter
21
The Effects of Body Size on the Evolution
of the Amphibian Middle Ear
........................... 421
Thomas E. Hetherington
Chapter
22
Biological Constraints on Anuran Acoustic Communication:
Auditory Capabilities of Naturally Behaving Animals
....... 439
Peter M. Narins
Contributed Abstracts
E. Some Unique Features of the Ear and the Lateral Line
of a Catfish and their Potential Bearing for Sound
Pressure Detection
............................... 455
H.
Bleckman,
В.
Fritzsch,
U.
Niemann,
AND H,M.
MÜLLER
F.
Comparative Analysis of Electrosensory and Auditory
Function in a Mormyrid Fish
....................... 457
John D. Crawford
G. Biophysics of Underwater Hearing in the Clawed Frog,
Xenopus laevis
................................... 459
J
Christensen-Dalsgaard and A. Elepfandt
Section V Nonmammalian Amniotes
Chapter
23
The Evolutionary Implications of the Structural Variations
in the Auditory Papilla of Lizards
........................ 463
Malcolm R. Miller
Chapter
24
Functional Consequences of Morphological Trends
in the Evolution of Lizard Hearing Organs
................ 489
Christine Köppl
and Geoffrey A. Manley
xvj
Contents
Chapter
25
Evolution of the Central Auditory System in Reptiles
and Birds
........................................... 511
Catherine E. Carr
Chapter
26
Hearing in Birds
..................................... 545
Robert J. Dooling
Chapter
27
Evolution and Specialization of Function in the Avian
Auditory Periphery
................................... 561
Geoffrey A. Manley and
Otto Gleich
Contributed Abstracts
H. Tuning in the Turtle: An Evolutionary Perspective
..... 581
Michael G. Sneary and Edwin R. Lewis
I. Paratympanic and Spiracular Sense Organs:
Phylogenetic Distribution and Theories of Function,
Including Hearing
................................ 582
Christopher S.
von Bartheld
and Edwin W.
Rubel
Section VI Mammals
Chapter
28
Evolution of the Auditory System in Synapsida
( Mammal-Like Reptiles and Primitive Mammals)
as Seen in the Fossil Record
............................ 587
Edgar F. Allin
and James A. Hopson
Chapter
29
Hearing in Transitional Mammals: Predictions from the
Middle-Ear Anatomy and Hearing Capabilities
of Extant Mammals
................................... 615
John J. Rosowski
Chapter
30
Parallel Evolution of Low Frequency Sensitivity
in Old World and New World Desert Rodents
.............. 633
Douglas B. Webster and Wolfgang Plassmann
Chapter
31
A Functional Model of the Peripheral Auditory System
in Mammals and Its Evolutionary Implications
............. 637
Wolfgang Plassmann and
Kurt Brändle
Chapter
32
Origin of Auditory Cortex
.............................. 655
Shawn B. Frost and R.
Bruce Masterton
Chapter
33
Mammalian Auditory Cortex—Some Comparative
Observations
........................................ 673
Michael M. Merzenich and
Christoff
E.
Schreiner
Chapter
34
Evolution of Sound Localization in Mammals
.............. 691
Rickye S. Heffner and Henry E. Heffner
Contents
xv¡¡
Chapter
35
The Marine Mammal Ear: Specializations for Aquatic
Audition and Echolocation
............................. 717
Darlene R.
Ketten
Chapter
36
Adaptations of Basic Structures and Mechanisms
in the Cochlea and Central Auditory Pathway
of the Mustache Bat
.................................. 751
George D.
Pollar
Contributed Abstracts
J. The Story of the Evolution of Hearing Identifying
the Sources of Sound
............................. 779
William A. Yost
K. Evolution of Ultrasonic and Supersonic
Hearing in Man
.................................. 780
Martin L. Lenhardt and Alex M. Clarke
L. Broad Frequency Selectivity at High Sound
Pressure Levels is Important for Speech
Coding in the Cochlear Nucleus
.................... 781
S.
Greenberg
and William S. Rhode
M. Direction-Dependent Acoustical Transformation
in the External Ear of the Cat: Effects of
Pinna Movement
................................. 782
A.D.
Musicant, J.C.K. Chan, and J.E. Hind
N.
Toward Understanding Mammalian Hearing
Tractability: Preliminary Underwater Acoustical
Perception Thresholds in the West Indian
Manatee, Tricherchus manatus
...................... 783
Geoffrey W.
Patton
and Edmund Gerstein
O. The Acoustic Spatial Environment of the Mustache
Bat Within the Context of Evolution
................. 784
Z.M. Fuzessery
Section
VII
Epilogue
Chapter
37
Epilogue to the Conference on the Evolutionary
Biology of Hearing
................................... 787
Douglas B. Webster
Author Index
................................................... 795
Animal Index
................................................... 819
Subject Index
................................................... 841
Detailed Chapter Contents
Preface
............................................................
Jv
Acknowledgments
.................................................
xj
Contributors
....................................................... xxxvii
Ernest Glen
Wever:
Biography and Bibliography
Richard R. Fay
................................................... xliii
Section I Evolutionary Perspectives
Chapter
1
An Overview of the Evolutionary Biology of Hearing
Carl Gans.............................................. 3
1.
Introduction
.......................................... 3
2.
Evolutionary Patterns
.................................. 3
2.1
Phenotype and Environment
........................ 3
2.2
Physiology, Behavior, and Environmental Demands
..... 4
2.3
Sequences and Experiments
........................ 5
2.4
Uncertainty
..................................... 5
3.
Hearing
............................................. 6
3.1
Aspects
......................................... 6
3.2
Cues and Discrimination
........................... 7
3.3
Liquids and Gases
................................ 7
3.4
Transition from Water to Land
...................... 8
3.5
The Uses of Sounds-Benefits and Costs
.............. 9
3.6
Social Vocalization in Frogs as an Example of Complexity
10
4.
Overview: Trends and Questions
........................ 11
5.
Summary
............................................ 12
Chapter
2
Comparisons of Major and Minor
Taxa
Reveal Two
Kinds of Differences: Lateral Adaptations
and Vertical Changes in Grade
Theodore H. Bullock
.................................. 15
1.
Introduction
.......................................... 15
2.
Evolution of Hearing
.................................. 15
3.
Estimation of Complexity
.............................. 16
4.
Admission of Vertical Grades
............................ 17
5.
Agenda for Future Research
............................. 17
6.
Summary
............................................ 18
xix
XX
Detailed Chapter Contents
Chapter
3
The Phytogeny of Octavolateralis Ontogenies:
A Reaffirmation
of Garstang s Phylogenetic Hypothesis
R. Glenn Northcutt
................................... 21
1.
Introduction
.......................................... 21
2.
A Cladistic Method for the Analysis of Ontogenies
.......... 22
2.1
Description and Recognition of Ontogenetic Stages
..... 22
2.2
Formulation of Hypotheses of Homologous
Ontogenetic Stages
............................... 22
2.3
The Polarity of Suspected Homologous
Ontogenetic Stages
............................... 23
2.4
Generation of Phylogenetic Scenarios
................ 24
2.5
Testing Phylogenetic Scenarios
..................... 25
2.6
Ontogenetic Changes
.............................. 25
3.
Developmental Stages of a Primitive Octavolateralis
Piacode .. 27
4.
The Ancestral Number and Distribution of
Octavolateralis Placodes
................................ 29
5.
The Phylogeny of Ontogenetic Changes in Lateral
Line Placodes
........................................ 33
5.1
Changes in Ontogenetic Stages of Placodes
............ 35
5.2
Changes in Placodal Cell Lineages
................... 37
5.3
Frequency of Different Types of Ontogenetic Change
... 40
5.4
Future Directions
................................. 41
6.
Summary
............................................ 42
Chapter
4
Evolution of the Vertebrate Inner Ear:
An Overview of Ideas
Arthur
N.
Popper, Christopher
Platt,
and Peggy L. Edds
..................................... 49
1.
Introduction
.......................................... 49
1.1
A Caution About Terminology
...................... 49
2.
Germinal Papers
...................................... 50
2.1
Origin of the Vertebrate Inner Ear
................... 50
2.2
The Acousticolateralis Hypothesis
................... 50
2.3
Van Bergeijk
(1967):
Evolution of Vertebrate Hearing
.. 51
2.4
Baird
(1974):
Anatomical Features of the
Inner Ear in Submammalian Vertebrates
............. 51
2.5
Wever
( 1974) :
The Evolution of Vertebrate
Hearing
........................................ 53
3.
Issues from the Reviewed Papers
........................ 54
3.1
Acousticolateralis Hypothesis
....................... 54
3.2
Auditory Organ Homologies
........................ 55
4.
Summary
............................................ 56
Section II Invertebrates
Chapter
5
Hearing and Sound Communication in Small Animals:
Evolutionary Adaptations to the Laws of Physics
Axel Michelsen
........................................ 61
1.
Introduction
.......................................... 61
2.
The Transmission Channel
.............................. 61
3.
Sound Emission
...................................... 63
3.1
Animal
Monopoles
and Dipoles
..................... 64
3.2
Communicating Through a Solid Substrate
............ 65
3.3
The Metabolic Costs of Signaling
.................... 65
Detailed Chapter Contents
xxi
3.4
Long-Range Signaling: A Summary
.................. 66
3.5
Close-Range Signals
.............................. 66
3.6
Physical Restraints on Signal Coding
................. 67
4.
The Hearing Organs
................................... 68
4.1
Directional Hearing
............................... 69
4.2
Frequency Analysis
............................... 73
5.
Summary and Conclusions
.............................. 75
Chapter
6
Ecological Constraints for the Evolution of Hearing
and Sound Communication in Insects
Heiner Römer.......................................... 79
1.
Introduction
.......................................... 79
2.
Range of Communication
............................... 79
2.1
Signal Attenuation
................................ 79
2.2
Frequency Filtering
............................... 81
2.3
Consequences for the Evolution of Signaling
........... 82
3.
Signal Degradation
.................................... 83
3.1
Degradation of Temporal Cues
...................... 83
3.2
Degradation of Directional Cues
.................... 86
4.
Noise and Hearing in the Field
.......................... 88
4.1
Interspecific Interference
.......................... 88
4.2
Intraspecific Interference
.......................... 89
5.
Reliable and Nonreliable Acoustic Cues
................... 90
6.
Summary
............................................ 90
Chapter
7
The Processing of Auditory Signals in the CNS
of Orthoptera
Brian Lewis
............................................ 95
1.
Introduction
.......................................... 95
1.1
Signal Structure and Behavior
...................... 95
1.2
The Input to the CNS
............................. 96
2.
The Central Auditory Pathway
.......................... 97
2.1
Primary Sensory Neuropil
......................... 97
2.2
Local and Intersegmental Neurons
................... 97
2.3
Brain Neurons
................................... 98
2.4
Descending Brain Neurons
......................... 99
3.
Central Processing
.................................... 100
3.1
Temporal Selectivity of Central Neurons
.............. 105
3.2
The Integration of Sound and Vibration
............... 108
4.
Conclusions
.......................................... 110
Chapter
8
The Evolution of Hearing in Insects as an
Adaptation to
Prédation
from Bats
Ronald R. Hoy
......................................... 115
1.
Introduction
.......................................... 115
2
Old Problems, Sound Answers
.......................... 115
2.1
Sexual Signals and Ears
............................ 115
2.2
Predator Detection and Ears
........................ 115
2.3
Which Came First: Bats or Ears?
.................... 116
3.
Hearing Organs in Insects
.............................. 117
3.1
Cytological Aspects
............................... 117
3.2
Development and Evolution
........................ 118
4.
Ultrasound Startle/Escape Reactions in Insects
.............. 120
4.1
Hearing and Startle in Moths
....................... 120
4.2
Hearing and Ultrasound Startle in Crickets
............ 121
XXII
Detailed Chapter Contents
4.3
Hearing Organs
.................................. 121
4.4
Central Nervous Mechanism
........................ 121
4.5
Hearing and Startle in the Praying Mantis
............. 123
4.6
The Mantis Hearing Organ
......................... 123
4.7
Central Auditory Pathways
......................... 124
5.
Summary and Conclusions
.............................. 125
Chapter
9
Hearing in Crustacea
Bernd
U.
Budelmann
................................... 131
1.
Introduction
.......................................... 131
2.
Production of Sound
................................... 131
2.1
Production of Sound in Water
....................... 131
2.2
Production of Sound on Land
....................... 132
3.
Reception of Sound
.................................... 132
3.1
Reception of Sound in Water
........................ 133
3.2
Reception of Sound on Land
........................ 136
4.
Concluding Remarks
................................... 136
5.
Summary
............................................ 136
Chapter
10
Hearing in Nonarthropod Invertebrates
Bernd
U.
Budelmann
................................... 141
1.
Introduction
.......................................... 141
2.
Possible Receptor Systems for Hearing
.................... 142
2.1
Superficial Receptor Systems
....................... 142
2.2
Statocyst Receptor Systems
......................... 146
3.
Evolutionary Aspects and Conclusions
.................... 151
4.
Summary
............................................ 152
Contributed Abstracts
.................................................. 156
A. The Mechanoreceptive Origin of Insect Tympanal
Organs: A Comparative Study of Homologous
Nerves in Tympanate and Atympanate Moths
Jayne E.
Yack
and James H.
Fullärd
................... 156
B.
Organization of the Auditory Pathway in Noctuoid Moths:
Homologous Auditory Evolution in Insects
G.S.
Boyan, James H.
Fullärd,
and J.L.D. Williams
.................................. 157
С
Hearing in the Primitive Ensiferan Cyphoderris
monstrosa (Orthoperta: Haglidae)
Andrew
С
Mason and Klaus Schildberger
............. 158
D. Hair Cell Sensitivity in the Cephalopod Statocyst
Roddy Williamson
................................... 159
Section
ΙΠ
Aspects of Hearing Among Vertebrates
Chapter
11
Convergence of Design in Vertebrate Acoustic Sensors
Edwin R. Lewis
......................................... 163
1.
Introduction
.......................................... 163
2.
Theoretical and Conjectural Preamble
.................... 164
2.1
Some Technical Formalities
........................ 164
2.2
Speculations Concerning Selective Advantages
......... 166
2.3
Appropriate Signal Processing Schemes
.............. 167
3.
High-Order Dynamics in Peripheral Acoustic Filters
......... 169
3.1
SI/SO Functions from Reverse Correlation
............ 169
3.2
How High-Order Dynamics Might Be Achieved
........ 174
4.
Summary and Conclusions
.............................. 181
Detailed Chapter Contents
xxiii
Chapter
12
The Efferent
Innervation
of the Ear: Variations
on an Enigma
Barry L. Roberts and Gloria E. Meredith
.............. 185
1.
Introduction
.......................................... 185
2.
Targets for the Efferent Innvervadon
..................... 185
3.
Patterns of Efferent
Innervation
of Auditory
Endorgans...... 187
4.
Central Organization of the Auditory Efferent System
....... 189
4.1
Organization in Anamniotes
........................ 191
4.2
Organization in Amniotes
.......................... 192
5.
Putative
Neurotransmitters
of the Auditory Efferent
System
.............................................. 193
5.1
Neurotransmitter
Distribution in Animals
Other Than Mammals
............................. 193
5.2
Neurotransmitter
Distribution in Mammals
............ 196
6.
Circuitry Underlying the Activation of the Auditory
Efferent System
...................................... 196
6.1
Sensory Activation of Efferent Neurons
............... 196
6.2
Central Activation of Efferent Neurons
............... 198
7.
Trends in the Evolution of
OEN
......................... 200
8.
Other Hair Cell Systems with an Efferent
Innervation
....... 202
9.
The Origins of the
OES
................................ 202
10.
Summary and Conclusions
.............................. 203
Chapter
13
Evolution, Perception, and the Comparative Method
William
С
Stebbins and Mitchell S.
Sommers.......... 211
1.
Introduction
.......................................... 211
2.
Precursors
........................................... 212
3.
The Comparative Method
.............................. 214
4.
The Research Program
................................. 216
5.
Summary
............................................ 224
Chapter
14
Structure and Function in Sound Discrimination
Among Vertebrates
Richard R. Fay
......................................... 229
1.
Introduction
.......................................... 229
1.1
What Are the Functions of Hearing?
................. 229
2.
Sound Discrimination
.................................. 230
2.1
How Is Sound Discrimination Measured?
............. 231
2.2
Operant
Methods with Reward
...................... 231
2.3
Avoidance Methods
............................... 232
2.4
Classical Conditioning
............................. 232
3.
Hearing and Sound Discrimination in Vertebrates
........... 232
3.1
Hearing Sensitivity and Bandwidth (Audiograms)
...... 234
3.2
Level Discrimination
.............................. 235
3.3
Temporal Analysis in Hearing
....................... 236
4.
Frequency Analysis
................................... 243
4.1
Four Behavioral Measures of Frequency Resolution
..... 243
4.2
Structure and Function in Frequency Analysis
......... 245
4.3
Can Cochlear Maps Predict Behavioral Performance
in Frequency Analysis?
............................ 248
4.4
Psychophysical Tuning Curves
...................... 255
4.5
Fishes May Be Similar to Mammals and Birds
in Patterns of Frequency Analysis
.................... 256
5.
Summary and Conclusions
.............................. 257
xxjv Detailed Chapter Contents
Section IV Anamniotes
Chapter
15
Functional and Evolutionary Implications of Peripheral
Diversity in Lateral Line Systems
Sheryl Coombs, John
Janssen,
and John Montgomery
................................. 267
1.
Introduction
.......................................... 267
2.
Peripheral Anatomy and
Innervation
of the Lateral
Line System
......................................... 268
3.
Phyletic Distribution and Origin of the Lateral
Line System
......................................... 269
4.
Anatomical Dimensions of Variability and Functional
Consequences
........................................ 270
4.1
Superficial Neuromasts vs Canal Neuromasts
.......... 271
4.2
Canal Width
..................................... 272
5.
Developmental Mechanisms in the Evolution of the Lateral
Line System
......................................... 275
6.
Selective Pressures in the Evolution of Lateral Line Systems
.. 276
6.1
The Evolution of Widened Head Canals in
Pereid
Fishes
. 277
6.2
The Evolution of Supernumerary Free Neuromasts
in Amblyopsid Blind Cavefish
....................... 278
7.
Lateral Line and Inner Ear Stimuli—From Incompressible
Water Flow to Propagated Pressure Waves
................. 279
8.
Operational and Functional Trends in the Evolution
of the Lateral Line and Inner Ear
........................ 283
9.
Functional Overlap Between the Lateral Line and
Auditory System
...................................... 287
10.
Summary and Conclusions
.............................. 288
Chapter
16
Functional Aspects of the Evolution of the Auditory
System of Actinopterygian Fish
Nico
A.M.
Schellart
and Arthur
N.
Popper
............ 295
1.
Introduction
.......................................... 295
2.
The Diversity of Underwater Acoustic Environments
........ 295
2.1
Underwater Acoustics
............................. 296
2.2
Constraints of Underwater Sound Characteristics
on the Evolution of Fish Hearing
.................... 296
2.3
Background Noise
................................ 297
2.4
Conclusions
..................................... 299
3.
Use of Sounds by Fishes
............................... 302
4.
Structure and Function of Teleost Ears
.................... 303
4.1
Ear Structure
.................................... 303
4.2
Ear Stimulation
.................................. 305
5.
Hearing Abilities, Specializations, and Habitat
............. 306
6.
The Swimbladder
..................................... 310
6.1
Swimbladder Mechanics
........................... 310
6.2
The Swimbladder and Hearing
...................... 311
6.3
Swimbladder Shape and Hearing
.................... 311
6.4
Conclusions
..................................... 313
7.
Functional Morphology of the Inner Ear
.................. 313
7.1
Hair Cell Orientation Patterns
...................... 313
7.2
Otolith Structure and Relationship to the Epithelium
.... 315
7.3
Functional Specialization of Otolith Systems:
Multifunctionality and Directional Hearing
............ 315
Detailed Chapter Contents
xxv
8.
Evolution of the Ear in Agnathans and Elasmobranchs
....... 317
8.1
Agnathans
....................................... 317
8.2
Elasmobranches
.................................. 317
9.
Summary
............................................ 318
Chapter
17
Evolution of Central Auditory Pathways in Anamniotes
Catherine A. McCormick
............................... 323
1.
Introduction
.......................................... 323
2.
Class Agnatha
........................................ 323
2.1
Inner Ear Structure and Function
.................... 323
2.2
Central Representation of the Agnathan Inner Ear
...... 325
3.
Class Chondrichthyes
.................................. 325
3.1
Inner Ear Structure and Function
.................... 325
3.2
Central Representation of Inner Ear
Endorgans ........ 327
3.3
Higher-Order Acoustic Areas
....................... 328
4.
Class Osteichthyes
.................................... 329
4.1
Inner Ear Structure and Function
.................... 329
4.2
Inner Ear Projections in Osteichthyans:
Primitive Pattern
................................. 330
4.3
Inner Ear Projections in
Téleoste:
Minor Variations
on the Primitive Pattern
........................... 330
4.4
More Elaborate Variations on the Primitive Pattern
in
Teleoste
...................................... 331
4.5
Higher Order Acoustic Projections
................... 334
5.
Class Amphibia
....................................... 337
5.1
Structure and Function of the Inner Ear
.............. 337
5.2
Inner Ear Projections to the Medulla
................. 338
5.3
Higher Order Auditory Connections
................. 341
6.
Discussion
........................................... 342
7.
Summary
............................................ 345
Chapter
18
The Water-to-Land Transition: Evolution of the
Tetrapod
Basilar
Papilla, Middle Ear,
and Auditory Nuclei
Bernd Fritzsch......................................... 351
1.
Introduction
.......................................... 351
2.
Presumed Adaptations of the Ear of Sarcopterygian Fish
to Detect the Pressure Component of Aquatic Sound
........ 352
2.1
Perilymphatic, Pressure-Detection
Endorgans
in Vertebrates
.................................... 354
2.2
Definition and Distribution of
a Basilar
Papilla
......... 355
2.3
Relationship of the
Basilar
Papilla to the Lagenar
Macula and Recess
................................ 357
2.4
Ontogenetic Events Related to the Phylogenetic
Diversity of the
Lagena
and
Basilar
Papilla
............ 357
2.5
The Evolution of the Perilymphatic Labyrinth
......... 359
2.6
The Evolution of the Perilymphatic Foramen
to the Cranial Cavity
.............................. 361
2.7
The Spiracular Pouch and the Possible Evolution
of a Tympanic Ear in Water
........................ 361
2.8
The Canalis Communicans
......................... 362
2.9
What Could Cause Differences in Pressure on Either
Side of the
Basilar
Papilla?
......................... 362
2.10
Physical Constraints of Underwater Hearing
........... 364
2.11
The Ear and the Systematic Position of Latimeria
...... 364
XXVI
Detailed Chapter Contents
3.
The Water-to-Land Transition:
De Novo
Development of a
Tympanic Ear or Transformation of an Aquatic
Tympanic Ear?
....................................... 365
3.1
Changed Physical Conditions Necessitate the
Transformation of an Aquatic Tympanic Ear
........... 366
3.2
Insertion of the Hyomandibular Bone and Development
of the Perilymphatic Labyrinth
...................... 367
3.3
The Evolution of the Amphibian Papilla
.............. 368
3.4
Biological Context of Hearing of Ancestral Tetrapods
... 369
4.
Reorganizations in the Central Nervous System During
the Water-to-Land Transition
............................ 369
4.1
Metamorphic Loss of the Lateral Line System Does
Not Correlate with the Development of Auditory
Nuclei in Frogs
.................................. 369
4.2
Loss of Electroreception Shows Phylogenetic
Coincidence with the Appearance of Primary
Auditory Nuclei
.................................. 370
4.3
What Causes the Formation of Separate Projections
of Perilymphatic
Endorgans in
Vertebrates?
.......... 370
5.
Summary
............................................ 372
Chapter
19
Nature and Quality of the Fossil Evidence for Otic
Evolution in Early Tetrapods
John R. Bolt and R. Eric Lombard
..................... 377
1.
Introduction
.......................................... 377
2.
Paleozoic Tetrapods
................................... 377
2.1
Time and Space
.................................. 377
2.2
The Nature of the Fossils
.......................... 380
2.3
The Major
Taxa
.................................. 384
3.
Evolutionary Relationships
............................. 385
4.
Overview of Otic Structure
............................. 387
4.1
The Scope of the Data
............................. 387
4.2
Otic Structure
................................... 389
5.
Evolution of the Ear
................................... 392
6.
Summary and Conclusions
.............................. 399
Appendix.
................................................ 402
Chapter
20
The Stapes of Acanthostega gunnari and the Role
of the Stapes in Early Tetrapods
J.A. Clack
.............................................. 405
1.
Introduction
.......................................... 405
2.
The Stapes and Otic Region of Acanthostega gunnari
........ 405
2.1
Description and Comparative Morphology
............ 406
2.2
The Temporal Notch
oí
Acanthostega
................. 409
2.3
The Otic Capsule
oí
Acanthostega
................... 409
2.4
Phylogenetic Considerations
........................ 410
3.
The Function of the Stapes and Otic Region
in Early Tetrapods
.................................... 411
3.1
Recent Hypotheses
................................ 411
3.2
Relationships of the Stapes, Palate, Braincase, and Skull
Roof in Early Tetrapods-The Fallacy of Autostyly
in the Earliest Tetrapods
........................... 412
3.3
Functional Considerations
.......................... 415
4.
Summary
.............................................418
Detailed Chapter Contents
xxvii
Chapter
21
The Effects of Body Size on the Evolution
of the Amphibian Middle Ear
Thomas E. Hetherington
............................... 421
1.
Introduction
.......................................... 421
2.
Design and Function of Acoustic Receptive Systems
in Amphibians
........................................ 421
2.1
The Tympanic Middle Ear
......................... 421
2.2
The Opercularis System
........................... 422
2.3
Other Nontympanic Pathways of Sound Reception
...... 424
2.4
An Integrated View of Acoustic Reception
in Amphibians
................................... 425
3.
Effects of Body Size on Mechanisms of Acoustic Reception
... 426
3.1
Scaling of Middle Ear Morphology
.................. 426
3.2
Scaling of the Frequency Response of the Tympanic
Middle Ear
...................................... 427
3.3
Scaling of Nontympanic Sound Reception
............. 428
3.4
An Overview of the Effects of Body Size
on Acoustic Reception
............................. 429
4.
Loss of the Tympanic Middle Ear—A Major
Evolutionary Trend
.................................... 430
4.1
Morphological Patterns of Tympanic Middle
Ear Reduction
................................... 430
4.2
Factors Correlated with Reduction and Loss
of the Tympanic Ear
.............................. 431
4.3
The Relationship Between Body Size and Loss
of the Tympanic Ear
.............................. 433
5.
Discussion and Summary
............................... 434
Chapter
22
Biological Constraints on Anuran Acoustic
Communication: Auditory Capabilities of Naturally
Behaving Animals
Peter M. Narins
........................................ 439
1.
Introduction
.......................................... 439
1.1
A Representative Neotropical Chorusing Anuran
...... 440
2.
Field Psychoacoustics
.................................. 440
2.1
Behavioral Response Functions
...................... 440
2.2
Isointensity Response
............................. 441
2.3
Timing Shifts as a Measure of Threshold
.............. 441
2.4
Call Duration Sensitivity
........................... 443
2.5
Effective Critical Ratio and Effective Critical Band
..... 443
2.6
Intensity Discrimination
........................... 444
3.
Interindividual Time Constants
.......................... 447
3.1
Behavioral Refractory Period (BRP)
.................. 447
3.2
Call Synchronization Rate (CSR)
.................... 447
3.3
Relationship Between BRP and CSR
................. 449
4.
Collective Acoustic Behavior of Anuran Amphibians
........ 449
4.1
Dynamic Chorus Structure (DCS)
................... 450
5.
Summary and Conclusions
.............................. 451
Contributed Abstracts
E. Some Unique Features of the Ear and the Lateral Line
of a Catfish and Their Potential Bearing for Sound
Pressure Detection
H.
Bleckman,
В.
Fritzsch,
U.
Niemann,
AND H.M.
MÜLLER................................... 455
XXVIII
Detailed Chapter Contents
F.
Comparative Analysis of Electrosensory and Auditory
Function in a Mormyrid Fish
John D. Crawford
................................... 457
G. Biophysics of Underwater Hearing in the Clawed
Frog, Xenopus laevis
J
Christensen-Dalsgaard and A. Elepfandt
............ 459
Section V Nonmammalian Amniotes
Chapter
23
The Evolutionary Implications of the Structural
Variations in the Auditory Papilla of Lizards
Malcolm R. Miller
.................................... 463
1.
Introduction
.......................................... 463
2.
Basic Anatomy of the Lizard Cochlear Duct
and
Basilar
Papilla
.................................... 463
3.
Comparative Anatomy of the Cochlear Duct and
Basilar
Papilla of Lizard Families
............................... 466
3.1
Relationship of Lizard Cochlear Duct and
Basilar
Papilla Anatomy to that of Other Reptiles
............. 466
3.2
The Development of Bidirectionally Oriented Hair
Cells in Lizards
.................................. 468
3.3
Gross Anatomical Features of the Cochlear Duct
of Species of Different Lizard Families
............... 470
3.4
Groups of Ear-Related Lizard Families Based on Gross
and Fine Structural Anatomy
....................... 471
4.
Phylogeny of Lizard Families Based on Cochlear Duct
and
Basilar
Papilla Structure
............................ 480
4.1
Ancestral Type Auditory Papilla and Its Relationship
to the Papillae of the Teiidae and Varanidae
........... 480
4.2
Possible Lines of Descent
.......................... 480
5.
Possible
Taxonomic
and Phylogenetic Relationships of Lizard
Families Based on Wever s
(1978)
Reptilian Ear Studies
and on that of Other Anatomical Characters
............... 483
5.1
Wever s
Taxonomic
Grouping of Lizard Families
....... 483
5.2
Taxonomic
Relationships Based on Brain Anatomy
..... 484
5.3
Taxonomic
Relationships Based on Other Anatomical
Characters
...................................... 484
5.4
Camp s
(1923)
Classic Proposal of Lizard Family
Phylogeny
....................................... 484
6.
Possible Significance of Cochlear Duct and
Basilar
Papilla
Structural Variations
................................... 485
7.
Summary and Conclusions
.............................. 485
Chapter
24
Functional Consequences of Morphological Trends
in the Evolution of Lizard Hearing Organs
Christine Köppl
and Geoffrey A. Manley
.............. 489
1.
Introduction
.......................................... 489
2.
The Hearing of the Red-Eared Turtle (Pseudemys
scripta)
as an Example of the Presumed Ancestral Condition
......... 489
2.1
Hearing Range
................................... 489
2.2
Tonotopic Organization of the Turtle s
Basilar
Papilla
___ 489
2.3
Frequency Selectivity
............................. 490
2.4
An Active Force-Generating Mechanism in Hair Cells
... 492
Detailed Chapter Contents
xxix
3.
The Hearing of Modern Lizards
......................... 492
3.1
The Alligator Lizard Gerrhonotus multicarinatus
(Anguidae) and the Granite Spiny Lizard Sceloporus
orcutti (Iguanidae)
................................ 492
3.2
The Bobtail Lizard Tiliqua
rugosa (Scincidae)
......... 496
3.3
The Lacertid Lizards
Podareis
muralis
and P. sicula (Lacertidae)
.......................... 499
3.4
The Tokay Gecko Gekko gecko (Gekkonidae)
.......... 499
4.
How Is the Diverse Anatomy of the Lizard Ear Reflected
in its Function?
....................................... 500
4.1
The Hearing Range and Papular Size Do Not Correlate
.. 500
4.2
There Is a Fundamental Segregation of Low-Frequency
and High-Frequency Processing
..................... 501
5.
Implications for the Evolution of Lizard Hearing
............ 504
5.1
Differences Between the Hearing of the Turtle
and of Lizards
................................... 504
5.2
Anatomical Characteristics and the Origin of the High-
Frequency Papular Segment in Lizards
............... 505
5.3
Possible Causes of the Structural Variation in Lizards
... 506
6.
Summary
............................................ 507
Chapter
25
Evolution of the Central Auditory System in Reptiles
and Birds
Catherine E. Carr
...................................... 511
1.
Introduction
.......................................... 511
2.
Phylogenetic Considerations
............................ 511
2.1
Reptiles
......................................... 512
2.2
Birds
........................................... 512
3.
Hearing Range
....................................... 513
3.1
Auditory Sensitivity
.............................. 513
3.2
Sound Localization
............................... 513
3.3
Song and Vocalization
............................. 514
4.
The Central Auditory System: Basic Reptilian Plan
.......... 514
4.1
Chelonia (Turtles and Tortoises)
..................... 514
4.2
Lepidosauria (Lizards and Snakes)
................... 515
4.3
Crocodilia (Caiman)
.............................. 519
5.
The Central Auditory Pathways: Basic Avian Plan
.......... 521
5.1
Basal Landbirds—Pigeon, Chicken, Guinea Fowl,
and Budgerigar
................................... 521
5.2
Higher Landbirds
................................. 525
5.3
Waterbirds (Duck, Seagull)
.......................... 530
6.
Evolution of Central Auditory Pathways in Birds and Reptiles
. 530
6.1
Morphotype
..................................... 530
6.2
Specializations in Reptiles
.......................... 531
6.3
Specializations in Birds
............................ 532
6.4
Comparisons with the Mammalian Central Auditory
System
......................................... 535
7.
Summary
............................................ 537
Chapter
26
Hearing in Birds
Robert J. Dooling
...................................... 545
1.
Introduction
.......................................... 545
2.
Sensitivity to Changes in an Acoustic Signal
............... 545
3.
Absolute Threshold Sensitivity
.......................... 546
3.1
Comparison Among the Orders of Birds
.............. 547
xxx
Detailed Chapter Contents
3.2
Comparison of Passerines/Nonpasserines/Owls
......... 547
3.3
Comparison Among the Families of Passerines
......... 548
3.4
Absolute Sensitivity and the Characteristics
of Vocal Signals
.................................. 549
4.
Vocal Learning and the Perception of Complex Sounds
....... 551
4.1
Perceptual Categories for Vocal Signals:
Species Differences
............................... 552
4.2
Perceptual Categories for Vocal Signals:
Effects of Experience and Sex
...................... 554
5.
Summary and Conclusions
.............................. 557
Chapter
27
Evolution and Specialization of Function in the
Avian Auditory Periphery
Geoffrey A. Manley and
Otto Gleich ................. 561
1.
Introduction
.......................................... 561
2.
The Middle Ear and the Hearing Range
................... 561
3.
Phylogenetic Considerations
............................ 562
3.1
The Phylogenetic Relationships of Extant Reptiles,
Birds, and Mammals
.............................. 562
3.2
Relationships Between Extant Families of Birds
........ 563
4.
The Starling as a Model of Bird Hearing
.................. 563
4.1
The Avian Cochlear Duct
.......................... 564
4.2
Structure of the Starling s Hearing Organ
.............. 565
4.3
Physiology of the Auditory Papilla of the Starling
....... 565
5.
A Comparison of Structural and Functional Data from
Other Avian Species
................................... 571
6.
The Evolution of the Avian Hearing Organ
................. 573
6.1
General Trends in the Early Evolution of the
Avian Papilla
.................................... 573
6.2
Functional Implications of Variations in Avian
Papular
Anatomy
................................. 574
6.3
Mechanisms of Frequency Selectivity in the Avian
Basilar
Papilla
................................... 575
6.4
Is the Avian
Basilar
Papilla a Multifunctional
Sense Organ?
.................................... 577
7.
Summary
............................................ 578
Contributed Abstracts
H. Tuning in the Turtle: An Evolutionary Perspective
Michael G. Sneary and Edwin R. Lewis
................ 581
I. Paratympanic and Spiracular Sense Organs:
Phylogenetic Distribution and Theories of Function,
Including Hearing
Christopher S.
von Bartheld
and Edwin W.
Rubel...... 582
Section VI Mammals
Chapter
28
Evolution of the Auditory System in Synapsida
( Mammal-Like Reptiles and Primitive Mammals)
as Seen in the Fossil Record
Edgar F. Allin
and James A. Hopson
................... 587
1.
Introduction
.......................................... 587
2.
Homologies
..........................................
59O
Detailed Chapter Contents
xxxi
3.
Osteologic
Features of Fossil Synapsid Groups
............. 592
3.1
Nontherapsid Synapsids ( Pelycosaurs )
.............. 592
3.2
Biarmosuchia (Basal Therapsids)
.................... 597
3.3
Advanced Nontheriodont Therapsids
................. 597
3.4
Noncynodont Theriodonts (Gorgonopsians
and Therocephalians)
............................. 598
3.5
Nonmammalian Cynodonts
......................... 599
3.6
Primitive Mammals
............................... 604
3.7
Advanced Mammals
............................... 606
4.
Inner Ear
............................................ 606
5.
Parallel Originations of the Definitive Mammalian Middle
Ear (DMME)
........................................ 608
6.
Mode of Transference of Postdentary Elements to the
Cranium
............................................. 608
7.
Theories of Auditory Evolution: Comparison of Paradigms
... 609
8.
Summary
............................................ 611
Chapter
29
Hearing in Transitional Mammals: Predictions
from the Middle-Ear Anatomy and Hearing
Capabilities of Extant Mammals
John J. Rosowski
........................................ 615
1.
Introduction
.......................................... 615
2.
Review of the Structure of the Middle Ear of a Transitional
Mammal, Morganucodon
............................... 616
3.
Comparisons of the Middle Ear of Morganucodon with
those of Extant Mammals
.............................. 617
3.1
Comparisons of Middle-Ear Type
.................... 617
3.2
Comparisons of Middle-Ear Size
.................... 619
4.
Dependence of Auditory Function on Middle-Ear Structure
... 619
4.1
Definition of Limits of Hearing
..................... 620
4.2
Relationships Between Middle-Ear Type and
Hearing Limits
................................... 620
4.3
Relationships Between Middle-Ear Areas and
Hearing Limits
................................... 621
5.
Predicting Hearing Limits from Middle-Ear Dimensions
..... 623
5.1
Predictions of the Hearing Limits for Morganucodon
.... 623
5.2
Tests of the Prediction Procedure
.................... 624
5.3
Hearing in Morganucodon
.......................... 625
6.
Discussion
........................................... 626
6.1
The Influence of the Inner Ear
...................... 626
6.2
Absolute Hearing Sensitivity
....................... 626
6.3
Mechanisms for the Observed Relationships Between
Middle-Ear Structure and Hearing Function
........... 626
6.4
Effector Head Size
............................... 628
6.5
Speculations About the Niche Filled by Morganucodon
and Other Early Mammals
......................... 628
7.
Summary and Conclusions
.............................. 628
Chapter
30
Parallel Evolution of Low-Frequency Sensitivity
in Old World and New World Desert Rodents
Douglas B. Webster and Wolfgang Plassmann
.......... 633
1.
Introduction
.......................................... 633
2.
Middle Ear Differences Between Heteromyids and Gerbils
... 633
xxxii
Detailed Chapter
Contenti
3.
Inner Ear Differences Between Heteromyid
and Gerbilline Rodents
................................. 634
4.
Low-Frequency Hearing and Its Adaptive Value
in Heteromyids and Gerbillines
.......................... 635
5.
Summary
............................................ 635
Chapter
31
A Functional Model of the Peripheral Auditory System
in Mammals and Its Evolutionary Implications
Wolfgang Plassmann and
Kurt Brändle ............... 637
1.
Introductory Deliberations
.............................. 637
1.1
Frequency Range and Adaptation
.................... 637
1.2
Adaptation versus Constraints
....................... 638
1.3
Methodological Deliberations
....................... 638
1.4
Basic Facts on the Peripheral Auditory System
......... 640
1.5
Structural Model of the Peripheral Auditory System
..... 641
1.6
Fundamental Assumptions for the Model
............. 641
2.
Functional Model of Mammalian Outer and Middle Ear
...... 642
2.1
Assumptions and Acoustic Equations
................. 642
2.2
Empirical Basis for Verification of the Functional Model
. 642
2.3
Mathematical Deliberation
......................... 643
3.
Basic Functional Model and Essential Deviations
........... 643
3.1
Establishment of a Plausible Model Variant
............ 643
3.2
Basic Functional Model and Approximation Procedure
.. 644
3.3
Deviation from the Basic Model in Gerbilline Rodents
.. 646
4.
Basic Functional Model and Implications
.................. 648
4.1
Physical Functioning of the Model
................... 648
4.2
Frequency Range of Best Sensitivity
................. 648
4.3
Interdependence of Structures and Resonance
Frequencies
..................................... 648
4.4
Morphological Constraints for Frequency Shifts
........ 649
4.5
Evolutionary Aspects
.............................. 649
5.
Summary
............................................ 651
Appendix: Mathematical Solution
............................ 651
Chapter
32
Origin of Auditory Cortex
Shawn B. Frost and R.
Bruce Masterton............... 655
1.
Introduction
.......................................... 655
1.1
Homology and Homoplasy Among Vertebrate
Forebrains
....................................... 655
1.2
Contribution of Afferent Projections to the Study
of Forebrain Homologies
........................... 655
1.3
Relative Locations of Sensory Targets in the Forebrain
.. 656
1.4
Phyletic Evidence of Nuclear Migration
.............. 659
2.
Telencephalic Projections of Medial Geniculate in Marsupials
. 659
2.1
Subcortical
Projections in Didelphis virginiana
......... 659
2.2
Subcortical
Projections in Monodelphis
domestica
...... 661
3.
Telencephalic Projections of Medial Geniculate in Placentals
.. 663
3.1
Subcortical
Projections in Placentals
................. 664
3.2
Phyletic Reduction of
Subcortical
Projections
.......... 665
4.
Discussion
........................................... 665
4.1
Translocation
of Auditory Telencephalon
.............. 665
4.2
Expansion of Preexisting Neocortex
.................. 669
4.3
Differentiation of Preexisting Neocortex
.............. 669
4.4
Importation of Non-Neocortex into Neocortex
......... 670
5.
Summary
............................................ 670
Detailed Chapter Contents
xxxiii
Chapter
33
Mammalian Auditory Cortex—Some
Comparative Observations
Michael M. Merzenich and
Christoff
E.
Schreiner___ 673
1.
Introduction
.......................................... 673
2.
Some Comparative Observations on the Organization
of Auditory Cortical Fields
............................. 673
2.1
Cytoarchitectonic and Myeloarchitectonic Studies
of Auditory Cortical Fields
......................... 673
2.2
Physiological Identification of the Primary
Auditory Cortex
.................................. 674
2.3
Identification of Other Auditory Cortical Fields
........ 678
2.4
Internal Organization of Auditory Cortical Fields;
Topographic Organization Beyond Tonotopicity
........ 681
3.
Studies of Phylogenetic Development of Cortical
Representations in Other Sensory Systems; Some Relevant
Findings and Conclusions
.............................. 683
4.
Ontogenetic Formation of Cortical Maps ; Implications
for Comparative Studies
................................ 684
5.
Summary; Some General Conclusions
.................... 685
Chapter
34
Evolution of Sound Localization in Mammals
Rickye S. Heffner and Henry E. Heffner
............... 691
1.
Introduction
.......................................... 691
2.
The Cues for Sound Localization
........................ 691
2.1
Binaural Locus Cues
.............................. 692
2.2
Monaural Spectral Cues
............................ 694
3.
Variation in the Use of Binaural Locus Cues
Among Mammals
..................................... 695
3.1
Determining the Use of Binaural Locus Cues
.......... 695
3.2
Species Using Binaural Phase and Intensity
Difference Cues
.................................. 695
3.3
Species with Limited or Absent Ability to Use
Binaural Phase Differences
......................... 697
3.4
Species with Reduced or Absent Ability to Use
Binaural Intensity Differences
...................... 698
3.5
Species Using Neither Binaural Time Nor Intensity
..... 699
4.
Use of Monaural Spectral Cues
.......................... 700
4.1
Sound Localization in the Horizontal Plane
............ 700
4.2
Sound Localization in the Vertical Plane
.............. 701
4.3
Mobile Pinnae
................................... 702
5.
Variation in the Superior Olivary Complex
................ 702
6.
Evolution of High-Frequency Hearing
..................... 703
6.1
High-Frequency Hearing and Sound Localization
....... 703
6.2
Alternative Explanations of High-Frequency Hearing
.... 706
7.
Evolution of Horizontal Sound-Localization Acuity
.......... 707
7.1
Availability of Binaural Cues
........................ 708
7.2
The Relation to Vision
............................. 708
8.
Summary: Evolution of Mammalian Sound Localization
...... 711
Chapter
35
The Marine Mammal Ear: Specialization for Aquatic
Audition and Echolocation
Darlene R.
Ketten..................................... 717
1.
Introduction
.......................................... 717
1.1
Adaptive Radiation of
Cetácea
...................... 717
xxxjv Detailed Chapter Contents
2.
Sound Production Characteristics and Audition
............. 719
2.1
Audiometrie Data
................................ 719
2.2
Cetacean Vocalizations
............................ 720
3.
Cetacean Cranial Morphology
........................... 720
3.1
Telescoping
...................................... 722
3.2
Cranial Paths for Emitted Sounds
.................... 722
3.3
Cranial Structures for Sound Reception
............... 724
4.
The Extant Cetacean Ear
............................... 725
4.1
The Tympano-Periotic Complex
..................... 725
4.2
The Middle Ear
.................................. 727
4.3
The Inner Ear
.................................... 729
5.
The Extinct Cetacean Ear
.............................. 738
6.
Cetacean Auditory Adaptations
.......................... 741
6.1
Comparative Speculations
.......................... 741
6.2
Future Directions and Open Questions
............... 742
7.
Summary
............................................ 743
Appendix I-Marine Mammal Divisions
....................... 749
Chapter
36
Adaptations of Basic Structures and Mechanisms
in the Cochlea and Central Auditory Pathway
of the Mustache Bat
George D. Pollak
...................................... 751
1,
Introduction
.......................................... 751
2,
The
Doppler
Based
Biosonar
System of the Mustache Bat
___ 752
3,
Adaptation of the Peripheral Auditory System for
Processing
60
kHz
...........................,,....... 754
3.1
Anatomical Features of the Basal Region of the
Mustache Bat s Cochlea
............................ 755
3.2
Two Regions of the Basal Cochlea Are Densely
Innervated
....................................... 756
.,3
The Frequency-Place Map of the Mustache
Bat s Cochlea
.................................... 758
3.4
Speculations on the Functional Consequences of the
Anatomical Specializations
......................... 758
4,
Response Properties of Auditory Nerve Fibers Reflect
Cochlear Features
..................................... 760
4,1
Sharply Tuned Filter Units Are Sensitive to Amplitude
and Frequency Modulations
........................ 761
5,
Peripheral Adaptations Are Conserved in the Central
Auditory Pathway
..................................... 762
6,
Collicular Features Derived from Processing in the Central
Auditory Pathway: Monaural and Binaural Representation
___ 764
7,
The Source of Ascending Projections to Each of the Aural
Regions of the
Dorsoposterior
Division of the Mustache
Bat s Inferior Colliculus
................................ 766
8,
The Population of
Ш-Ї
Neurons Have Different Sensitivities
for Interaural Intensity Disparities
....................... 767
8.1
Ultrasonic Frequencies Generate Large Interaural
Intensity Disparities
.............................. 768
8.2
The Spatial Selectivities of
60
kHz
Е
-I
Neurons Are
Determined by the Disparities Generated by the Ears
and the Neuron s Inhibitory Threshold
................ 769
8.3
Inhibitory Thresholds of
60
kHz
Е
-I
Neurons Are
Topographically Organized Within the Dorsoposterior
Division and Create a Representation of Acoustic Space
.. 770
Detailed Chapter Contents
xxxv
9.
One Group of
E
-Е
Neurons Code for Elevation
Along the Midline
..................................... 771
10.
Spatial Properties of Neurons Tuned to Other Frequencies
.... 772
10.1
The Representation of Auditory Space in the Mustache
Bat s Inferior Colliculus
............................ 773
11.
Conclusions
.......................................... 774
Contributed Abstracts
J. The Story of the Evolution of Hearing Identifying
the Sources of Sound
William A. Yost
..................................... 779
K. Evolution of Ultrasonic and Supersonic Hearing in Man
Martin L. Lenhardt and Alex M. Clarke
.............. 780
L. Broad Frequency Selectivity at High Sound Pressure
Levels Is Important for Speech Coding in the
Cochlear Nucleus
S.
Greenberg
and William S. Rhode
................... 781
M. Direction-Dependent Acoustical Transformation in the
External Ear of the Cat: Effects of Pinna Movement
A.D.
Musicant, J.C.K. Chan and J.E. Hind
.............. 782
N.
Toward Understanding Mammalian Hearing Tractability:
Preliminary Underwater Acoustical Perception Thresholds
in the West Indian Manatee, Trichechus manatus
Geoffrey W.
Patton
and Edmund Gerstein
.............. 783
O. The Acoustic Spatial Environment of the Mustache Bat
Within the Context of Evolution
Z.M. Fuzessery
...................................... 784
Section
VII.
Epilogue
Chapter
37
Epilogue to the Conference on the Evolutionary
Biology of Hearing
Douglas B. Webster
.................................... 787
1.
Definition of Hearing
.................................. 787
2.
How Often and Where Has Hearing Evolved?
.............. 788
2.1
Invertebrates
..................................... 788
2.2
Fishes
.......................................... 788
2.3
Transition from Water to Land
...................... 788
3.
Is the Evolution of Hearing More Complex Than the
Evolution of Other Sensory Systems?
..................... 789
4.
Central Auditory System of Vertebrates
................... 790
5.
Hair Cells
........................................... 790
6.
Cochlear Emissions
................................... 790
7.
Selective Pressure for Hearing
........................... 790
8.
Topics Not Adequately Covered in the Conference
.......... 792
8.1
Hearing Ability and Mechanisms in Nonteleost Fishes
... 792
8.2
Evolutionary Biology of Middle Ear in Extant Mammals
. 792
8.3
Evolutionary Biology of Cochlea in Extant Mammals
... 792
8.4
Evolutionary Biology of Auditory Brainstem
in Extant Mammals
............................... 792
9.
Summary
............................................ 792
Author Index
.......................................................... 795
Animal Index
.......................................................... 819
Subject Index
.......................................................... 841
|
any_adam_object | 1 |
building | Verbundindex |
bvnumber | BV007702044 |
classification_rvk | WT 4500 WW 1660 |
classification_tum | BIO 745f BIO 782f |
ctrlnum | (OCoLC)231870670 (DE-599)BVBBV007702044 |
discipline | Biologie |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01918nam a2200493 c 4500</leader><controlfield tag="001">BV007702044</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20080312 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">930421s1992 ad|| |||| 10||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0387975888</subfield><subfield code="9">0-387-97588-8</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3540975888</subfield><subfield code="9">3-540-97588-8</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)231870670</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV007702044</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-355</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-12</subfield><subfield code="a">DE-M49</subfield><subfield code="a">DE-29T</subfield><subfield code="a">DE-11</subfield><subfield code="a">DE-188</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">WT 4500</subfield><subfield code="0">(DE-625)152001:13423</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">WW 1660</subfield><subfield code="0">(DE-625)152060:13423</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">BIO 745f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">BIO 782f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">The evolutionary biology of hearing</subfield><subfield code="c">Douglas B. Webster ... eds.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin [u.a.]</subfield><subfield code="b">Springer</subfield><subfield code="c">1992</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">LI, 859 S.</subfield><subfield code="b">Ill., graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Literaturangaben</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Gehörorgan</subfield><subfield code="0">(DE-588)4137367-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Evolution</subfield><subfield code="0">(DE-588)4071050-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Hören</subfield><subfield code="0">(DE-588)4025405-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Evolutionsbiologie</subfield><subfield code="0">(DE-588)4153283-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="0">(DE-588)1071861417</subfield><subfield code="a">Konferenzschrift</subfield><subfield code="y">1990</subfield><subfield code="z">Sarasota Fla.</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Hören</subfield><subfield code="0">(DE-588)4025405-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Evolutionsbiologie</subfield><subfield code="0">(DE-588)4153283-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Gehörorgan</subfield><subfield code="0">(DE-588)4137367-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Evolution</subfield><subfield code="0">(DE-588)4071050-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Hören</subfield><subfield code="0">(DE-588)4025405-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Webster, Douglas B.</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung TU Muenchen</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=005057524&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-005057524</subfield></datafield></record></collection> |
genre | (DE-588)1071861417 Konferenzschrift 1990 Sarasota Fla. gnd-content |
genre_facet | Konferenzschrift 1990 Sarasota Fla. |
id | DE-604.BV007702044 |
illustrated | Illustrated |
indexdate | 2024-07-09T17:07:57Z |
institution | BVB |
isbn | 0387975888 3540975888 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-005057524 |
oclc_num | 231870670 |
open_access_boolean | |
owner | DE-355 DE-BY-UBR DE-19 DE-BY-UBM DE-12 DE-M49 DE-BY-TUM DE-29T DE-11 DE-188 |
owner_facet | DE-355 DE-BY-UBR DE-19 DE-BY-UBM DE-12 DE-M49 DE-BY-TUM DE-29T DE-11 DE-188 |
physical | LI, 859 S. Ill., graph. Darst. |
publishDate | 1992 |
publishDateSearch | 1992 |
publishDateSort | 1992 |
publisher | Springer |
record_format | marc |
spelling | The evolutionary biology of hearing Douglas B. Webster ... eds. Berlin [u.a.] Springer 1992 LI, 859 S. Ill., graph. Darst. txt rdacontent n rdamedia nc rdacarrier Literaturangaben Gehörorgan (DE-588)4137367-4 gnd rswk-swf Evolution (DE-588)4071050-6 gnd rswk-swf Hören (DE-588)4025405-7 gnd rswk-swf Evolutionsbiologie (DE-588)4153283-1 gnd rswk-swf (DE-588)1071861417 Konferenzschrift 1990 Sarasota Fla. gnd-content Hören (DE-588)4025405-7 s Evolutionsbiologie (DE-588)4153283-1 s DE-604 Gehörorgan (DE-588)4137367-4 s Evolution (DE-588)4071050-6 s Webster, Douglas B. Sonstige oth Digitalisierung TU Muenchen application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=005057524&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | The evolutionary biology of hearing Gehörorgan (DE-588)4137367-4 gnd Evolution (DE-588)4071050-6 gnd Hören (DE-588)4025405-7 gnd Evolutionsbiologie (DE-588)4153283-1 gnd |
subject_GND | (DE-588)4137367-4 (DE-588)4071050-6 (DE-588)4025405-7 (DE-588)4153283-1 (DE-588)1071861417 |
title | The evolutionary biology of hearing |
title_auth | The evolutionary biology of hearing |
title_exact_search | The evolutionary biology of hearing |
title_full | The evolutionary biology of hearing Douglas B. Webster ... eds. |
title_fullStr | The evolutionary biology of hearing Douglas B. Webster ... eds. |
title_full_unstemmed | The evolutionary biology of hearing Douglas B. Webster ... eds. |
title_short | The evolutionary biology of hearing |
title_sort | the evolutionary biology of hearing |
topic | Gehörorgan (DE-588)4137367-4 gnd Evolution (DE-588)4071050-6 gnd Hören (DE-588)4025405-7 gnd Evolutionsbiologie (DE-588)4153283-1 gnd |
topic_facet | Gehörorgan Evolution Hören Evolutionsbiologie Konferenzschrift 1990 Sarasota Fla. |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=005057524&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT websterdouglasb theevolutionarybiologyofhearing |