Parallel one-step methods with minimal parallel stages:
Abstract: "The computing time of one-step methods for the numerical solution of initial-value problems y'(x) = f(x, y); y(x₀) = y₀ is closely related to the order of the approximation and the number of evaluations of f per unit step called stages. If parallel computers are used, the defini...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
München
1992
|
Schriftenreihe: | Technische Universität <München>: TUM-MATH
9210 |
Schlagworte: | |
Zusammenfassung: | Abstract: "The computing time of one-step methods for the numerical solution of initial-value problems y'(x) = f(x, y); y(x₀) = y₀ is closely related to the order of the approximation and the number of evaluations of f per unit step called stages. If parallel computers are used, the definition of stages has to be adapted, as many evaluations can be done simultaneously. For explicit Runge-Kutta (RK) methods of order p the minimal number of parallel stages s[subscript p] is known to be s[subscript p] = p. Here the result is generalized for any arbitrary type of explicit one-step method. For some important clases [sic] of implicit methods like implicit Runge-Kutta (IRK) methods, diagonal implicit Runge- Kutta (DIRK) methods, singly diagonal implicit Runge-Kutta (SDIRK) methods and semi-implicit Runge-Kutta (SIRK) methods, the same technique can be applied and leads to lower bounds of the minimal ps. Finally we show that for Rosenbrock-Wanner (ROW) methods s[subscript p] = p - 1 is optimal." |
Beschreibung: | 12 S. |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV007518796 | ||
003 | DE-604 | ||
005 | 20040413 | ||
007 | t | ||
008 | 930517s1992 gw t||| 00||| eng d | ||
035 | |a (OCoLC)32511801 | ||
035 | |a (DE-599)BVBBV007518796 | ||
040 | |a DE-604 |b ger |e rakwb | ||
041 | 0 | |a eng | |
044 | |a gw |c DE | ||
049 | |a DE-12 |a DE-19 |a DE-91G | ||
088 | |a TUM M 9210 | ||
100 | 1 | |a Kiehl, Martin |e Verfasser |0 (DE-588)13095733X |4 aut | |
245 | 1 | 0 | |a Parallel one-step methods with minimal parallel stages |c M. Kiehl |
264 | 1 | |a München |c 1992 | |
300 | |a 12 S. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Technische Universität <München>: TUM-MATH |v 9210 | |
520 | 3 | |a Abstract: "The computing time of one-step methods for the numerical solution of initial-value problems y'(x) = f(x, y); y(x₀) = y₀ is closely related to the order of the approximation and the number of evaluations of f per unit step called stages. If parallel computers are used, the definition of stages has to be adapted, as many evaluations can be done simultaneously. For explicit Runge-Kutta (RK) methods of order p the minimal number of parallel stages s[subscript p] is known to be s[subscript p] = p. Here the result is generalized for any arbitrary type of explicit one-step method. For some important clases [sic] of implicit methods like implicit Runge-Kutta (IRK) methods, diagonal implicit Runge- Kutta (DIRK) methods, singly diagonal implicit Runge-Kutta (SDIRK) methods and semi-implicit Runge-Kutta (SIRK) methods, the same technique can be applied and leads to lower bounds of the minimal ps. Finally we show that for Rosenbrock-Wanner (ROW) methods s[subscript p] = p - 1 is optimal." | |
650 | 4 | |a Runge-Kutta formulas | |
830 | 0 | |a Technische Universität <München>: TUM-MATH |v 9210 |w (DE-604)BV006186461 |9 9210 | |
999 | |a oai:aleph.bib-bvb.de:BVB01-004893482 |
Datensatz im Suchindex
_version_ | 1804121809423958016 |
---|---|
any_adam_object | |
author | Kiehl, Martin |
author_GND | (DE-588)13095733X |
author_facet | Kiehl, Martin |
author_role | aut |
author_sort | Kiehl, Martin |
author_variant | m k mk |
building | Verbundindex |
bvnumber | BV007518796 |
ctrlnum | (OCoLC)32511801 (DE-599)BVBBV007518796 |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01942nam a2200313 cb4500</leader><controlfield tag="001">BV007518796</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20040413 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">930517s1992 gw t||| 00||| eng d</controlfield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)32511801</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV007518796</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">DE</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-91G</subfield></datafield><datafield tag="088" ind1=" " ind2=" "><subfield code="a">TUM M 9210</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Kiehl, Martin</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)13095733X</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Parallel one-step methods with minimal parallel stages</subfield><subfield code="c">M. Kiehl</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">München</subfield><subfield code="c">1992</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">12 S.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Technische Universität <München>: TUM-MATH</subfield><subfield code="v">9210</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">Abstract: "The computing time of one-step methods for the numerical solution of initial-value problems y'(x) = f(x, y); y(x₀) = y₀ is closely related to the order of the approximation and the number of evaluations of f per unit step called stages. If parallel computers are used, the definition of stages has to be adapted, as many evaluations can be done simultaneously. For explicit Runge-Kutta (RK) methods of order p the minimal number of parallel stages s[subscript p] is known to be s[subscript p] = p. Here the result is generalized for any arbitrary type of explicit one-step method. For some important clases [sic] of implicit methods like implicit Runge-Kutta (IRK) methods, diagonal implicit Runge- Kutta (DIRK) methods, singly diagonal implicit Runge-Kutta (SDIRK) methods and semi-implicit Runge-Kutta (SIRK) methods, the same technique can be applied and leads to lower bounds of the minimal ps. Finally we show that for Rosenbrock-Wanner (ROW) methods s[subscript p] = p - 1 is optimal."</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Runge-Kutta formulas</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Technische Universität <München>: TUM-MATH</subfield><subfield code="v">9210</subfield><subfield code="w">(DE-604)BV006186461</subfield><subfield code="9">9210</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-004893482</subfield></datafield></record></collection> |
id | DE-604.BV007518796 |
illustrated | Not Illustrated |
indexdate | 2024-07-09T17:03:53Z |
institution | BVB |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-004893482 |
oclc_num | 32511801 |
open_access_boolean | |
owner | DE-12 DE-19 DE-BY-UBM DE-91G DE-BY-TUM |
owner_facet | DE-12 DE-19 DE-BY-UBM DE-91G DE-BY-TUM |
physical | 12 S. |
publishDate | 1992 |
publishDateSearch | 1992 |
publishDateSort | 1992 |
record_format | marc |
series | Technische Universität <München>: TUM-MATH |
series2 | Technische Universität <München>: TUM-MATH |
spelling | Kiehl, Martin Verfasser (DE-588)13095733X aut Parallel one-step methods with minimal parallel stages M. Kiehl München 1992 12 S. txt rdacontent n rdamedia nc rdacarrier Technische Universität <München>: TUM-MATH 9210 Abstract: "The computing time of one-step methods for the numerical solution of initial-value problems y'(x) = f(x, y); y(x₀) = y₀ is closely related to the order of the approximation and the number of evaluations of f per unit step called stages. If parallel computers are used, the definition of stages has to be adapted, as many evaluations can be done simultaneously. For explicit Runge-Kutta (RK) methods of order p the minimal number of parallel stages s[subscript p] is known to be s[subscript p] = p. Here the result is generalized for any arbitrary type of explicit one-step method. For some important clases [sic] of implicit methods like implicit Runge-Kutta (IRK) methods, diagonal implicit Runge- Kutta (DIRK) methods, singly diagonal implicit Runge-Kutta (SDIRK) methods and semi-implicit Runge-Kutta (SIRK) methods, the same technique can be applied and leads to lower bounds of the minimal ps. Finally we show that for Rosenbrock-Wanner (ROW) methods s[subscript p] = p - 1 is optimal." Runge-Kutta formulas Technische Universität <München>: TUM-MATH 9210 (DE-604)BV006186461 9210 |
spellingShingle | Kiehl, Martin Parallel one-step methods with minimal parallel stages Technische Universität <München>: TUM-MATH Runge-Kutta formulas |
title | Parallel one-step methods with minimal parallel stages |
title_auth | Parallel one-step methods with minimal parallel stages |
title_exact_search | Parallel one-step methods with minimal parallel stages |
title_full | Parallel one-step methods with minimal parallel stages M. Kiehl |
title_fullStr | Parallel one-step methods with minimal parallel stages M. Kiehl |
title_full_unstemmed | Parallel one-step methods with minimal parallel stages M. Kiehl |
title_short | Parallel one-step methods with minimal parallel stages |
title_sort | parallel one step methods with minimal parallel stages |
topic | Runge-Kutta formulas |
topic_facet | Runge-Kutta formulas |
volume_link | (DE-604)BV006186461 |
work_keys_str_mv | AT kiehlmartin parallelonestepmethodswithminimalparallelstages |