Zermelo-Fraenkel set theory:
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Columbus, Ohio
Merrill
1968
|
Schriftenreihe: | Merrill mathematics series
|
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | XI, 164 S. |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV007126223 | ||
003 | DE-604 | ||
005 | 20141218 | ||
007 | t | ||
008 | 930421s1968 |||| 00||| eng d | ||
035 | |a (OCoLC)435274 | ||
035 | |a (DE-599)BVBBV007126223 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
049 | |a DE-355 |a DE-19 |a DE-83 |a DE-188 | ||
050 | 0 | |a QA248 | |
082 | 0 | |a 512/.817 | |
084 | |a SK 150 |0 (DE-625)143218: |2 rvk | ||
084 | |a SK 155 |0 (DE-625)143219: |2 rvk | ||
084 | |a 04-01 |2 msc | ||
084 | |a 03Exx |2 msc | ||
100 | 1 | |a Hayden, Seymour |e Verfasser |4 aut | |
245 | 1 | 0 | |a Zermelo-Fraenkel set theory |c Seymour Hayden ; John F. Kennison |
264 | 1 | |a Columbus, Ohio |b Merrill |c 1968 | |
300 | |a XI, 164 S. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 0 | |a Merrill mathematics series | |
650 | 4 | |a Ensembles, Théorie des | |
650 | 4 | |a Set theory | |
650 | 0 | 7 | |a Theorie |0 (DE-588)4059787-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Zermelo-Fraenkel-Axiome |0 (DE-588)4190747-4 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Zermelo-Fraenkel-Axiome |0 (DE-588)4190747-4 |D s |
689 | 0 | 1 | |a Theorie |0 (DE-588)4059787-8 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Kennison, John F. |e Verfasser |4 aut | |
856 | 4 | 2 | |m HBZ Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=004541760&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-004541760 |
Datensatz im Suchindex
_version_ | 1804121317750865920 |
---|---|
adam_text | Table of Contents
Chapter 1
Groundrules 1
1 1 Introduction 1
1 2 Informal Logic 2
1 3 Zermelo Fraenkel Assumptions for the
Construction of Sets 10
1 4 Basic Consequences of the Assumptions 14
1 5 Ordered Pairs 17
Chapter 2
Relations and Functions 18
2 1 Functions 18
2 2 Relations 19
2 3 Equivalence Relations 21
2 4 Partial Ordering 24
2 5 Upper and Lower Bounds 25
2 6 Linear and Well Ordering 26
2 7 Properties of Mappings 27
2 8 Index Sets 29
Chapter 3
Binary Operations 31
3 1 Definitions 31
3 2 Classification of Binary Operations 32
3 3 Semigroups 35
3 4 Subsemigroups, Groups, Subgroups 38
3 5 The Permutations of a Set 42
3 6 Rings, Integral Domains, Fields 43
3 7 Isomorphisms and Homomorphisms 46
ix
x Zennelo Fraenkel Set Theory
Chapter 4
Ordinals, Cardinals, and the Axiom of Choice 50
4 1 Statement of the Axiom of Choice 50
4 2 Equivalent Forms of the Axiom of Choice 52
4 3 Ordinal Numbers 57
4 4 Cardinal Numbers 60
Chapter 5
The Axiom of Infinity and the Natural Numbers 66
5 1 Finite and Infinite Sets 66
5 2 Definition of the Set N 68
5 2a Peano s Postulates—an Alternative
Approach to the Natural Numbers 71
5 3 Inductive Definitions 73
5 4 Decimal Notation for Natural Numbers 79
Chapter 6
The Integers and the Rational Numbers 82
6 1 Introduction 82
6 2 An Intuitive View of the Integers 83
6 3 The Set Z of Integers 85
6 4 Ordered Integral Domains 88
6 5 Well Ordered Integral Domains 90
6 6 The Fundamental Theorem of Arithmetic 91
6 7 The Division Algorithm for Integers 93
6 8 The Set Q of Rational Numbers 94
Chapter 7
The Real and Complex Numbers 98
7 1 An Intuitive View of the Real Numbers 98
7 2 The Construction of R 100
7 3 Dedekind Complete Ordered Fields 102
7 4 Rational Exponents 105
Table of Contents xi
7 5 Cauchy Sequences in Ordered Fields 107
7 6 Cauchy Completions of Ordered Fields 113
7 7 Real Exponents 116
7 8 Notation for Real Numbers 117
7 9 Nested Sequences 120
7 10 Topology of the Real Line 122
7 11 The Complex Numbers 124
Chapter 8
Transflnite Arithmetic 128
8 1 Countable Sets 128
8 2 Products of Arbitrarily Many Sets 130
8 3 Infinite Sums and Products of Cardinals 133
8 4 Ordinal Addition, Subtraction, and
Multiplication 135
8 5 Transfinite Induction 138
8 6 Sums and Products of Infinitely Many
Ordinals 142
8 7 Notation for Infinite Cardinals and Ordinals 145
Appendix
Other Axioms and Approaches for Set Theory 149
A l Rank and Regularity 149
A 2 Godel Bernays Set Theory 153
A 3 Tarski Grothendieck Universes 157
References 159
Index 161
|
any_adam_object | 1 |
author | Hayden, Seymour Kennison, John F. |
author_facet | Hayden, Seymour Kennison, John F. |
author_role | aut aut |
author_sort | Hayden, Seymour |
author_variant | s h sh j f k jf jfk |
building | Verbundindex |
bvnumber | BV007126223 |
callnumber-first | Q - Science |
callnumber-label | QA248 |
callnumber-raw | QA248 |
callnumber-search | QA248 |
callnumber-sort | QA 3248 |
callnumber-subject | QA - Mathematics |
classification_rvk | SK 150 SK 155 |
ctrlnum | (OCoLC)435274 (DE-599)BVBBV007126223 |
dewey-full | 512/.817 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 512 - Algebra |
dewey-raw | 512/.817 |
dewey-search | 512/.817 |
dewey-sort | 3512 3817 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01538nam a2200433 c 4500</leader><controlfield tag="001">BV007126223</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20141218 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">930421s1968 |||| 00||| eng d</controlfield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)435274</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV007126223</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-355</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-83</subfield><subfield code="a">DE-188</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA248</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">512/.817</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 150</subfield><subfield code="0">(DE-625)143218:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 155</subfield><subfield code="0">(DE-625)143219:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">04-01</subfield><subfield code="2">msc</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">03Exx</subfield><subfield code="2">msc</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Hayden, Seymour</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Zermelo-Fraenkel set theory</subfield><subfield code="c">Seymour Hayden ; John F. Kennison</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Columbus, Ohio</subfield><subfield code="b">Merrill</subfield><subfield code="c">1968</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XI, 164 S.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Merrill mathematics series</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ensembles, Théorie des</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Set theory</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Theorie</subfield><subfield code="0">(DE-588)4059787-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Zermelo-Fraenkel-Axiome</subfield><subfield code="0">(DE-588)4190747-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Zermelo-Fraenkel-Axiome</subfield><subfield code="0">(DE-588)4190747-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Theorie</subfield><subfield code="0">(DE-588)4059787-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kennison, John F.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HBZ Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=004541760&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-004541760</subfield></datafield></record></collection> |
id | DE-604.BV007126223 |
illustrated | Not Illustrated |
indexdate | 2024-07-09T16:56:04Z |
institution | BVB |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-004541760 |
oclc_num | 435274 |
open_access_boolean | |
owner | DE-355 DE-BY-UBR DE-19 DE-BY-UBM DE-83 DE-188 |
owner_facet | DE-355 DE-BY-UBR DE-19 DE-BY-UBM DE-83 DE-188 |
physical | XI, 164 S. |
publishDate | 1968 |
publishDateSearch | 1968 |
publishDateSort | 1968 |
publisher | Merrill |
record_format | marc |
series2 | Merrill mathematics series |
spelling | Hayden, Seymour Verfasser aut Zermelo-Fraenkel set theory Seymour Hayden ; John F. Kennison Columbus, Ohio Merrill 1968 XI, 164 S. txt rdacontent n rdamedia nc rdacarrier Merrill mathematics series Ensembles, Théorie des Set theory Theorie (DE-588)4059787-8 gnd rswk-swf Zermelo-Fraenkel-Axiome (DE-588)4190747-4 gnd rswk-swf Zermelo-Fraenkel-Axiome (DE-588)4190747-4 s Theorie (DE-588)4059787-8 s DE-604 Kennison, John F. Verfasser aut HBZ Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=004541760&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Hayden, Seymour Kennison, John F. Zermelo-Fraenkel set theory Ensembles, Théorie des Set theory Theorie (DE-588)4059787-8 gnd Zermelo-Fraenkel-Axiome (DE-588)4190747-4 gnd |
subject_GND | (DE-588)4059787-8 (DE-588)4190747-4 |
title | Zermelo-Fraenkel set theory |
title_auth | Zermelo-Fraenkel set theory |
title_exact_search | Zermelo-Fraenkel set theory |
title_full | Zermelo-Fraenkel set theory Seymour Hayden ; John F. Kennison |
title_fullStr | Zermelo-Fraenkel set theory Seymour Hayden ; John F. Kennison |
title_full_unstemmed | Zermelo-Fraenkel set theory Seymour Hayden ; John F. Kennison |
title_short | Zermelo-Fraenkel set theory |
title_sort | zermelo fraenkel set theory |
topic | Ensembles, Théorie des Set theory Theorie (DE-588)4059787-8 gnd Zermelo-Fraenkel-Axiome (DE-588)4190747-4 gnd |
topic_facet | Ensembles, Théorie des Set theory Theorie Zermelo-Fraenkel-Axiome |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=004541760&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT haydenseymour zermelofraenkelsettheory AT kennisonjohnf zermelofraenkelsettheory |