Infinite dimensional Morse theory and multiple solution problems:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Boston [u.a.]
Birkhäuser
1993
|
Schriftenreihe: | Progress in nonlinear differential equations and their applications
6 |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | Hier auch später erschienene, unveränderte Nachdrucke |
Beschreibung: | X, 312 S. graph. Darst. |
ISBN: | 0817634517 3764334517 |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV007039414 | ||
003 | DE-604 | ||
005 | 20140328 | ||
007 | t | ||
008 | 930419s1993 gw d||| |||| 00||| eng d | ||
020 | |a 0817634517 |9 0-8176-3451-7 | ||
020 | |a 3764334517 |9 3-7643-3451-7 | ||
035 | |a (OCoLC)23383893 | ||
035 | |a (DE-599)BVBBV007039414 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
044 | |a gw |c DE | ||
049 | |a DE-12 |a DE-739 |a DE-355 |a DE-91G |a DE-20 |a DE-824 |a DE-703 |a DE-19 |a DE-634 |a DE-11 |a DE-188 |a DE-384 | ||
050 | 0 | |a QA331 | |
082 | 0 | |a 515 |2 20 | |
084 | |a SK 350 |0 (DE-625)143233: |2 rvk | ||
084 | |a SK 620 |0 (DE-625)143249: |2 rvk | ||
084 | |a SK 660 |0 (DE-625)143251: |2 rvk | ||
084 | |a MAT 576f |2 stub | ||
100 | 1 | |a Chang, Kung-ching |d 1936- |e Verfasser |0 (DE-588)133505863 |4 aut | |
245 | 1 | 0 | |a Infinite dimensional Morse theory and multiple solution problems |c Kung-ching Chang |
264 | 1 | |a Boston [u.a.] |b Birkhäuser |c 1993 | |
300 | |a X, 312 S. |b graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Progress in nonlinear differential equations and their applications |v 6 | |
500 | |a Hier auch später erschienene, unveränderte Nachdrucke | ||
650 | 4 | |a EDP non linéaire | |
650 | 7 | |a Morse theorie |2 gtt | |
650 | 7 | |a Morse, théorie de |2 ram | |
650 | 4 | |a calcul variation | |
650 | 4 | |a théorie Morse | |
650 | 4 | |a Morse theory | |
650 | 0 | 7 | |a Randwertproblem |0 (DE-588)4048395-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Kritischer Punkt |g Mathematik |0 (DE-588)4207169-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Lösung |g Mathematik |0 (DE-588)4120678-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Semilineare elliptische Differentialgleichung |0 (DE-588)4225683-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Hamiltonsches System |0 (DE-588)4139943-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Morse-Theorie |0 (DE-588)4197103-6 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Kritischer Punkt |g Mathematik |0 (DE-588)4207169-0 |D s |
689 | 0 | 1 | |a Semilineare elliptische Differentialgleichung |0 (DE-588)4225683-5 |D s |
689 | 0 | 2 | |a Randwertproblem |0 (DE-588)4048395-2 |D s |
689 | 0 | 3 | |a Morse-Theorie |0 (DE-588)4197103-6 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Hamiltonsches System |0 (DE-588)4139943-2 |D s |
689 | 1 | 1 | |a Lösung |g Mathematik |0 (DE-588)4120678-2 |D s |
689 | 1 | 2 | |a Morse-Theorie |0 (DE-588)4197103-6 |D s |
689 | 1 | |5 DE-604 | |
830 | 0 | |a Progress in nonlinear differential equations and their applications |v 6 |w (DE-604)BV007934389 |9 6 | |
856 | 4 | 2 | |m HBZ Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=004466301&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-004466301 |
Datensatz im Suchindex
_version_ | 1804121209452888064 |
---|---|
adam_text | Table of Contents
Preface vii
Introduction ix
Chapter I: Infinite Dimensional Morse Theory
1. A Review of Algebraic Topology 1
2. A Review of the Banach Finsler Manifold 14
3. Pseudo Gradient Vector Field and the Deformation Theorems . 19
4. Critical Groups and Morse Type Numbers 32
5. Gromoll Meyer Theory 43
6. Extensions of Morse Theory 54
6.1. Morse Theory Under General Boundary Conditions . . 55
6.2. Morse Theory on a Locally Convex Closed Set 60
7. Equivariant Morse Theory 65
7.1. Preliminaries 66
7.2. Equivariant Deformation 67
7.3. The Splitting Theorem and the Handle Body Theorem
for Critical Manifolds 69
7.4. G Cohomology and G Critical Groups 74
Chapter II: Critical Point Theory.
1. Topological Link 83
2. Morse Indices of Minimax Critical Points 92
2.1. Link 92
2.2. Genus and Cogenus 96
3. Connections with Other Theories 99
3.1. Degree theory 99
3.2. Ljusternik Schnirelman Theory 105
3.3. Relative Category 109
4. Invariant Functionals Ill
5. Some Abstract Critical Point Theorems 121
6. Perturbation Theory 131
6.1. Perturbation on Critical Manifolds 131
6.2. Uhlenbeck s Perturbation Method 136
Chapter III: Applications to Semilinear Elliptic Boundary Value Problems.
1. Preliminaries 140
2. Superlinear Problems 144
3. Asymptotically Linear Problems 153
vi Infinite Dimensional Morse Theory
3.1. Nonresonance and Resonance with the Landesman Lazer
Condition 153
3.2. Strong Resonance 156
3.3. A Bifurcation Problem 161
3.4. Jumping Nonlinearities 164
3.5. Other Examples 169
4. Bounded Nonlinearities 172
4.1. Functionals Bounded From Below 172
4.2. Oscillating Nonlinearity 173
4.3. Even Functionals 176
4.4. Variational Inequalities 177
Chapter IV: Multiple Periodic Solutions of Hamiltonian Systems
1. Asymptotically Linear Systems 182
2. Reductions and Periodic Nonlinearities 188
2.1. Saddle Point Reduction 188
2.2. A Multiple Solution Theorem 195
2.3. Periodic Nonlinearity 198
3. Singular Potentials 203
4. The Multiple Pendulum Equation 209
5. Some Results on Arnold Conjectures 215
5.1. Conjectures 215
5.2. The Fixed Point Conjecture on (T2 , u 0) 218
5.3. Lagrange Intersections for (CP ,RPn) 220
Chapter V: Applications to Harmonic Maps and Minimal Surfaces
1. Harmonic Maps and the Heat Flow 229
2. The Morse Inequalities 246
3. Morse Decomposition 250
4. The Existence and Multiplicity for Harmonic Maps 257
5. The Plateau Problem for Minimal Surfaces 260
Appendix: Witten s Proof of the Morse Inequalities
1. A Review of Hodge Theory 274
2. The Witten Complex 282
3. Weak Morse Inequalities 287
4. Morse Inequalities 295
References 298
Index of Notation 310
Index 311
|
any_adam_object | 1 |
author | Chang, Kung-ching 1936- |
author_GND | (DE-588)133505863 |
author_facet | Chang, Kung-ching 1936- |
author_role | aut |
author_sort | Chang, Kung-ching 1936- |
author_variant | k c c kcc |
building | Verbundindex |
bvnumber | BV007039414 |
callnumber-first | Q - Science |
callnumber-label | QA331 |
callnumber-raw | QA331 |
callnumber-search | QA331 |
callnumber-sort | QA 3331 |
callnumber-subject | QA - Mathematics |
classification_rvk | SK 350 SK 620 SK 660 |
classification_tum | MAT 576f |
ctrlnum | (OCoLC)23383893 (DE-599)BVBBV007039414 |
dewey-full | 515 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515 |
dewey-search | 515 |
dewey-sort | 3515 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02762nam a2200649 cb4500</leader><controlfield tag="001">BV007039414</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20140328 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">930419s1993 gw d||| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0817634517</subfield><subfield code="9">0-8176-3451-7</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3764334517</subfield><subfield code="9">3-7643-3451-7</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)23383893</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV007039414</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">DE</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-739</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-91G</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-824</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-634</subfield><subfield code="a">DE-11</subfield><subfield code="a">DE-188</subfield><subfield code="a">DE-384</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA331</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515</subfield><subfield code="2">20</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 350</subfield><subfield code="0">(DE-625)143233:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 620</subfield><subfield code="0">(DE-625)143249:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 660</subfield><subfield code="0">(DE-625)143251:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 576f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Chang, Kung-ching</subfield><subfield code="d">1936-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)133505863</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Infinite dimensional Morse theory and multiple solution problems</subfield><subfield code="c">Kung-ching Chang</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Boston [u.a.]</subfield><subfield code="b">Birkhäuser</subfield><subfield code="c">1993</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">X, 312 S.</subfield><subfield code="b">graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Progress in nonlinear differential equations and their applications</subfield><subfield code="v">6</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Hier auch später erschienene, unveränderte Nachdrucke</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">EDP non linéaire</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Morse theorie</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Morse, théorie de</subfield><subfield code="2">ram</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">calcul variation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">théorie Morse</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Morse theory</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Randwertproblem</subfield><subfield code="0">(DE-588)4048395-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Kritischer Punkt</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4207169-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Lösung</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4120678-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Semilineare elliptische Differentialgleichung</subfield><subfield code="0">(DE-588)4225683-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Hamiltonsches System</subfield><subfield code="0">(DE-588)4139943-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Morse-Theorie</subfield><subfield code="0">(DE-588)4197103-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Kritischer Punkt</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4207169-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Semilineare elliptische Differentialgleichung</subfield><subfield code="0">(DE-588)4225683-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Randwertproblem</subfield><subfield code="0">(DE-588)4048395-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="3"><subfield code="a">Morse-Theorie</subfield><subfield code="0">(DE-588)4197103-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Hamiltonsches System</subfield><subfield code="0">(DE-588)4139943-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Lösung</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4120678-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="2"><subfield code="a">Morse-Theorie</subfield><subfield code="0">(DE-588)4197103-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Progress in nonlinear differential equations and their applications</subfield><subfield code="v">6</subfield><subfield code="w">(DE-604)BV007934389</subfield><subfield code="9">6</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HBZ Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=004466301&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-004466301</subfield></datafield></record></collection> |
id | DE-604.BV007039414 |
illustrated | Illustrated |
indexdate | 2024-07-09T16:54:21Z |
institution | BVB |
isbn | 0817634517 3764334517 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-004466301 |
oclc_num | 23383893 |
open_access_boolean | |
owner | DE-12 DE-739 DE-355 DE-BY-UBR DE-91G DE-BY-TUM DE-20 DE-824 DE-703 DE-19 DE-BY-UBM DE-634 DE-11 DE-188 DE-384 |
owner_facet | DE-12 DE-739 DE-355 DE-BY-UBR DE-91G DE-BY-TUM DE-20 DE-824 DE-703 DE-19 DE-BY-UBM DE-634 DE-11 DE-188 DE-384 |
physical | X, 312 S. graph. Darst. |
publishDate | 1993 |
publishDateSearch | 1993 |
publishDateSort | 1993 |
publisher | Birkhäuser |
record_format | marc |
series | Progress in nonlinear differential equations and their applications |
series2 | Progress in nonlinear differential equations and their applications |
spelling | Chang, Kung-ching 1936- Verfasser (DE-588)133505863 aut Infinite dimensional Morse theory and multiple solution problems Kung-ching Chang Boston [u.a.] Birkhäuser 1993 X, 312 S. graph. Darst. txt rdacontent n rdamedia nc rdacarrier Progress in nonlinear differential equations and their applications 6 Hier auch später erschienene, unveränderte Nachdrucke EDP non linéaire Morse theorie gtt Morse, théorie de ram calcul variation théorie Morse Morse theory Randwertproblem (DE-588)4048395-2 gnd rswk-swf Kritischer Punkt Mathematik (DE-588)4207169-0 gnd rswk-swf Lösung Mathematik (DE-588)4120678-2 gnd rswk-swf Semilineare elliptische Differentialgleichung (DE-588)4225683-5 gnd rswk-swf Hamiltonsches System (DE-588)4139943-2 gnd rswk-swf Morse-Theorie (DE-588)4197103-6 gnd rswk-swf Kritischer Punkt Mathematik (DE-588)4207169-0 s Semilineare elliptische Differentialgleichung (DE-588)4225683-5 s Randwertproblem (DE-588)4048395-2 s Morse-Theorie (DE-588)4197103-6 s DE-604 Hamiltonsches System (DE-588)4139943-2 s Lösung Mathematik (DE-588)4120678-2 s Progress in nonlinear differential equations and their applications 6 (DE-604)BV007934389 6 HBZ Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=004466301&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Chang, Kung-ching 1936- Infinite dimensional Morse theory and multiple solution problems Progress in nonlinear differential equations and their applications EDP non linéaire Morse theorie gtt Morse, théorie de ram calcul variation théorie Morse Morse theory Randwertproblem (DE-588)4048395-2 gnd Kritischer Punkt Mathematik (DE-588)4207169-0 gnd Lösung Mathematik (DE-588)4120678-2 gnd Semilineare elliptische Differentialgleichung (DE-588)4225683-5 gnd Hamiltonsches System (DE-588)4139943-2 gnd Morse-Theorie (DE-588)4197103-6 gnd |
subject_GND | (DE-588)4048395-2 (DE-588)4207169-0 (DE-588)4120678-2 (DE-588)4225683-5 (DE-588)4139943-2 (DE-588)4197103-6 |
title | Infinite dimensional Morse theory and multiple solution problems |
title_auth | Infinite dimensional Morse theory and multiple solution problems |
title_exact_search | Infinite dimensional Morse theory and multiple solution problems |
title_full | Infinite dimensional Morse theory and multiple solution problems Kung-ching Chang |
title_fullStr | Infinite dimensional Morse theory and multiple solution problems Kung-ching Chang |
title_full_unstemmed | Infinite dimensional Morse theory and multiple solution problems Kung-ching Chang |
title_short | Infinite dimensional Morse theory and multiple solution problems |
title_sort | infinite dimensional morse theory and multiple solution problems |
topic | EDP non linéaire Morse theorie gtt Morse, théorie de ram calcul variation théorie Morse Morse theory Randwertproblem (DE-588)4048395-2 gnd Kritischer Punkt Mathematik (DE-588)4207169-0 gnd Lösung Mathematik (DE-588)4120678-2 gnd Semilineare elliptische Differentialgleichung (DE-588)4225683-5 gnd Hamiltonsches System (DE-588)4139943-2 gnd Morse-Theorie (DE-588)4197103-6 gnd |
topic_facet | EDP non linéaire Morse theorie Morse, théorie de calcul variation théorie Morse Morse theory Randwertproblem Kritischer Punkt Mathematik Lösung Mathematik Semilineare elliptische Differentialgleichung Hamiltonsches System Morse-Theorie |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=004466301&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
volume_link | (DE-604)BV007934389 |
work_keys_str_mv | AT changkungching infinitedimensionalmorsetheoryandmultiplesolutionproblems |