Recursive definitions in type theory:
The type theories we consider are adequate for the foundations of mathematics and computer science. Recursive type definitions are important practical ways to organize data, and they express powerful axioms about the termination of procedures. In the theory examined here, the demands of practicality...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Ithaca, NY
1985
|
Schriftenreihe: | Cornell University <Ithaca, NY> / Dep. of Computer Science: Technical report
659. |
Schlagworte: | |
Zusammenfassung: | The type theories we consider are adequate for the foundations of mathematics and computer science. Recursive type definitions are important practical ways to organize data, and they express powerful axioms about the termination of procedures. In the theory examined here, the demands of practicality arising from our implemented system, Nuprl, suggest an approach to recursive types that significantly increases the proof theoretic power of the theory and leads to insights into computational semantics We offer a new account of recursive definitions for both types and partial functions. The computational requirements of the theory restrict recursive type definitions involving the total function-space constructor |
Beschreibung: | 33 S. |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV006527946 | ||
003 | DE-604 | ||
005 | 20200630 | ||
007 | t | ||
008 | 930210s1985 |||| 00||| eng d | ||
035 | |a (OCoLC)16651387 | ||
035 | |a (DE-599)BVBBV006527946 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
049 | |a DE-91G | ||
084 | |a SS 4570 |0 (DE-625)143475: |2 rvk | ||
100 | 1 | |a Constable, Robert Lee |d 1952- |e Verfasser |0 (DE-588)1089583133 |4 aut | |
245 | 1 | 0 | |a Recursive definitions in type theory |c R. L. Constable ; N. P. Mendler |
264 | 1 | |a Ithaca, NY |c 1985 | |
300 | |a 33 S. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Cornell University <Ithaca, NY> / Dep. of Computer Science: Technical report |v 659. | |
520 | 3 | |a The type theories we consider are adequate for the foundations of mathematics and computer science. Recursive type definitions are important practical ways to organize data, and they express powerful axioms about the termination of procedures. In the theory examined here, the demands of practicality arising from our implemented system, Nuprl, suggest an approach to recursive types that significantly increases the proof theoretic power of the theory and leads to insights into computational semantics | |
520 | 3 | |a We offer a new account of recursive definitions for both types and partial functions. The computational requirements of the theory restrict recursive type definitions involving the total function-space constructor | |
650 | 4 | |a Recursion theory | |
650 | 4 | |a Type theory | |
700 | 1 | |a Mendler, N. P. |e Verfasser |4 aut | |
810 | 2 | |a Dep. of Computer Science: Technical report |t Cornell University <Ithaca, NY> |v 659. |w (DE-604)BV006185504 |9 659 | |
999 | |a oai:aleph.bib-bvb.de:BVB01-004157561 |
Datensatz im Suchindex
_version_ | 1804120794247200768 |
---|---|
any_adam_object | |
author | Constable, Robert Lee 1952- Mendler, N. P. |
author_GND | (DE-588)1089583133 |
author_facet | Constable, Robert Lee 1952- Mendler, N. P. |
author_role | aut aut |
author_sort | Constable, Robert Lee 1952- |
author_variant | r l c rl rlc n p m np npm |
building | Verbundindex |
bvnumber | BV006527946 |
classification_rvk | SS 4570 |
ctrlnum | (OCoLC)16651387 (DE-599)BVBBV006527946 |
discipline | Informatik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01808nam a2200337 cb4500</leader><controlfield tag="001">BV006527946</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20200630 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">930210s1985 |||| 00||| eng d</controlfield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)16651387</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV006527946</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91G</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SS 4570</subfield><subfield code="0">(DE-625)143475:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Constable, Robert Lee</subfield><subfield code="d">1952-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1089583133</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Recursive definitions in type theory</subfield><subfield code="c">R. L. Constable ; N. P. Mendler</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Ithaca, NY</subfield><subfield code="c">1985</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">33 S.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Cornell University <Ithaca, NY> / Dep. of Computer Science: Technical report</subfield><subfield code="v">659.</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">The type theories we consider are adequate for the foundations of mathematics and computer science. Recursive type definitions are important practical ways to organize data, and they express powerful axioms about the termination of procedures. In the theory examined here, the demands of practicality arising from our implemented system, Nuprl, suggest an approach to recursive types that significantly increases the proof theoretic power of the theory and leads to insights into computational semantics</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">We offer a new account of recursive definitions for both types and partial functions. The computational requirements of the theory restrict recursive type definitions involving the total function-space constructor</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Recursion theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Type theory</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Mendler, N. P.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="810" ind1="2" ind2=" "><subfield code="a">Dep. of Computer Science: Technical report</subfield><subfield code="t">Cornell University <Ithaca, NY></subfield><subfield code="v">659.</subfield><subfield code="w">(DE-604)BV006185504</subfield><subfield code="9">659</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-004157561</subfield></datafield></record></collection> |
id | DE-604.BV006527946 |
illustrated | Not Illustrated |
indexdate | 2024-07-09T16:47:45Z |
institution | BVB |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-004157561 |
oclc_num | 16651387 |
open_access_boolean | |
owner | DE-91G DE-BY-TUM |
owner_facet | DE-91G DE-BY-TUM |
physical | 33 S. |
publishDate | 1985 |
publishDateSearch | 1985 |
publishDateSort | 1985 |
record_format | marc |
series2 | Cornell University <Ithaca, NY> / Dep. of Computer Science: Technical report |
spelling | Constable, Robert Lee 1952- Verfasser (DE-588)1089583133 aut Recursive definitions in type theory R. L. Constable ; N. P. Mendler Ithaca, NY 1985 33 S. txt rdacontent n rdamedia nc rdacarrier Cornell University <Ithaca, NY> / Dep. of Computer Science: Technical report 659. The type theories we consider are adequate for the foundations of mathematics and computer science. Recursive type definitions are important practical ways to organize data, and they express powerful axioms about the termination of procedures. In the theory examined here, the demands of practicality arising from our implemented system, Nuprl, suggest an approach to recursive types that significantly increases the proof theoretic power of the theory and leads to insights into computational semantics We offer a new account of recursive definitions for both types and partial functions. The computational requirements of the theory restrict recursive type definitions involving the total function-space constructor Recursion theory Type theory Mendler, N. P. Verfasser aut Dep. of Computer Science: Technical report Cornell University <Ithaca, NY> 659. (DE-604)BV006185504 659 |
spellingShingle | Constable, Robert Lee 1952- Mendler, N. P. Recursive definitions in type theory Recursion theory Type theory |
title | Recursive definitions in type theory |
title_auth | Recursive definitions in type theory |
title_exact_search | Recursive definitions in type theory |
title_full | Recursive definitions in type theory R. L. Constable ; N. P. Mendler |
title_fullStr | Recursive definitions in type theory R. L. Constable ; N. P. Mendler |
title_full_unstemmed | Recursive definitions in type theory R. L. Constable ; N. P. Mendler |
title_short | Recursive definitions in type theory |
title_sort | recursive definitions in type theory |
topic | Recursion theory Type theory |
topic_facet | Recursion theory Type theory |
volume_link | (DE-604)BV006185504 |
work_keys_str_mv | AT constablerobertlee recursivedefinitionsintypetheory AT mendlernp recursivedefinitionsintypetheory |