Spektraldarstellung linearer Transformationen des Hilbertschen Raumes:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | German |
Veröffentlicht: |
Berlin
Springer
1942
|
Schriftenreihe: | [Ergebnisse der Mathematik und ihrer Grenzgebiete / Alte Folge]
5,5 |
Schlagworte: | |
Beschreibung: | IV, 80 S. |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV006240373 | ||
003 | DE-604 | ||
005 | 20220801 | ||
007 | t | ||
008 | 930210s1942 |||| 00||| ger d | ||
035 | |a (OCoLC)4171090 | ||
035 | |a (DE-599)BVBBV006240373 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a ger | |
049 | |a DE-739 |a DE-12 |a DE-20 |a DE-824 |a DE-29T |a DE-11 |a DE-188 | ||
050 | 0 | |a QA691 | |
082 | 0 | |a 513.8 | |
084 | |a SK 600 |0 (DE-625)143248: |2 rvk | ||
084 | |a SK 620 |0 (DE-625)143249: |2 rvk | ||
100 | 1 | |a Szőkefalvi-Nagy, Béla |d 1913-1998 |e Verfasser |0 (DE-588)123323371 |4 aut | |
245 | 1 | 0 | |a Spektraldarstellung linearer Transformationen des Hilbertschen Raumes |c von Béla v. Sz. Nagy |
264 | 1 | |a Berlin |b Springer |c 1942 | |
300 | |a IV, 80 S. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a [Ergebnisse der Mathematik und ihrer Grenzgebiete / Alte Folge] |v 5,5 | |
650 | 4 | |a Hilbert space | |
650 | 4 | |a Transformations (Mathematics) | |
650 | 0 | 7 | |a Spektraldarstellung |0 (DE-588)4182162-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Hilbert-Raum |0 (DE-588)4159850-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Funktionalanalysis |0 (DE-588)4018916-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Lineare Transformation |0 (DE-588)4167712-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Eigenwertproblem |0 (DE-588)4013802-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Linearer Operator |0 (DE-588)4167721-3 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Spektraltheorie |0 (DE-588)4116561-5 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Lineare Transformation |0 (DE-588)4167712-2 |D s |
689 | 0 | 1 | |a Hilbert-Raum |0 (DE-588)4159850-7 |D s |
689 | 0 | 2 | |a Spektraldarstellung |0 (DE-588)4182162-2 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Hilbert-Raum |0 (DE-588)4159850-7 |D s |
689 | 1 | 1 | |a Linearer Operator |0 (DE-588)4167721-3 |D s |
689 | 1 | 2 | |a Spektraltheorie |0 (DE-588)4116561-5 |D s |
689 | 1 | |5 DE-604 | |
689 | 2 | 0 | |a Eigenwertproblem |0 (DE-588)4013802-1 |D s |
689 | 2 | |5 DE-604 | |
689 | 3 | 0 | |a Funktionalanalysis |0 (DE-588)4018916-8 |D s |
689 | 3 | |5 DE-604 | |
810 | 2 | |a Alte Folge] |t [Ergebnisse der Mathematik und ihrer Grenzgebiete |v 5,5 |w (DE-604)BV020546983 |9 5,5 | |
940 | 1 | |q BSBQK0040 | |
999 | |a oai:aleph.bib-bvb.de:BVB01-003940612 | ||
980 | 4 | |a (DE-12)AK46709399 |
Datensatz im Suchindex
_version_ | 1804120455281377280 |
---|---|
any_adam_object | |
author | Szőkefalvi-Nagy, Béla 1913-1998 |
author_GND | (DE-588)123323371 |
author_facet | Szőkefalvi-Nagy, Béla 1913-1998 |
author_role | aut |
author_sort | Szőkefalvi-Nagy, Béla 1913-1998 |
author_variant | b s n bsn |
building | Verbundindex |
bvnumber | BV006240373 |
callnumber-first | Q - Science |
callnumber-label | QA691 |
callnumber-raw | QA691 |
callnumber-search | QA691 |
callnumber-sort | QA 3691 |
callnumber-subject | QA - Mathematics |
classification_rvk | SK 600 SK 620 |
ctrlnum | (OCoLC)4171090 (DE-599)BVBBV006240373 |
dewey-full | 513.8 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 513 - Arithmetic |
dewey-raw | 513.8 |
dewey-search | 513.8 |
dewey-sort | 3513.8 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02239nam a2200589 cb4500</leader><controlfield tag="001">BV006240373</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20220801 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">930210s1942 |||| 00||| ger d</controlfield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)4171090</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV006240373</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">ger</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-739</subfield><subfield code="a">DE-12</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-824</subfield><subfield code="a">DE-29T</subfield><subfield code="a">DE-11</subfield><subfield code="a">DE-188</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA691</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">513.8</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 600</subfield><subfield code="0">(DE-625)143248:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 620</subfield><subfield code="0">(DE-625)143249:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Szőkefalvi-Nagy, Béla</subfield><subfield code="d">1913-1998</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)123323371</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Spektraldarstellung linearer Transformationen des Hilbertschen Raumes</subfield><subfield code="c">von Béla v. Sz. Nagy</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin</subfield><subfield code="b">Springer</subfield><subfield code="c">1942</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">IV, 80 S.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">[Ergebnisse der Mathematik und ihrer Grenzgebiete / Alte Folge]</subfield><subfield code="v">5,5</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hilbert space</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Transformations (Mathematics)</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Spektraldarstellung</subfield><subfield code="0">(DE-588)4182162-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Hilbert-Raum</subfield><subfield code="0">(DE-588)4159850-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Funktionalanalysis</subfield><subfield code="0">(DE-588)4018916-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Lineare Transformation</subfield><subfield code="0">(DE-588)4167712-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Eigenwertproblem</subfield><subfield code="0">(DE-588)4013802-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Linearer Operator</subfield><subfield code="0">(DE-588)4167721-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Spektraltheorie</subfield><subfield code="0">(DE-588)4116561-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Lineare Transformation</subfield><subfield code="0">(DE-588)4167712-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Hilbert-Raum</subfield><subfield code="0">(DE-588)4159850-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Spektraldarstellung</subfield><subfield code="0">(DE-588)4182162-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Hilbert-Raum</subfield><subfield code="0">(DE-588)4159850-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Linearer Operator</subfield><subfield code="0">(DE-588)4167721-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="2"><subfield code="a">Spektraltheorie</subfield><subfield code="0">(DE-588)4116561-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Eigenwertproblem</subfield><subfield code="0">(DE-588)4013802-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="3" ind2="0"><subfield code="a">Funktionalanalysis</subfield><subfield code="0">(DE-588)4018916-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="3" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="810" ind1="2" ind2=" "><subfield code="a">Alte Folge]</subfield><subfield code="t">[Ergebnisse der Mathematik und ihrer Grenzgebiete</subfield><subfield code="v">5,5</subfield><subfield code="w">(DE-604)BV020546983</subfield><subfield code="9">5,5</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">BSBQK0040</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-003940612</subfield></datafield><datafield tag="980" ind1="4" ind2=" "><subfield code="a">(DE-12)AK46709399</subfield></datafield></record></collection> |
id | DE-604.BV006240373 |
illustrated | Not Illustrated |
indexdate | 2024-07-09T16:42:21Z |
institution | BVB |
language | German |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-003940612 |
oclc_num | 4171090 |
open_access_boolean | |
owner | DE-739 DE-12 DE-20 DE-824 DE-29T DE-11 DE-188 |
owner_facet | DE-739 DE-12 DE-20 DE-824 DE-29T DE-11 DE-188 |
physical | IV, 80 S. |
psigel | BSBQK0040 |
publishDate | 1942 |
publishDateSearch | 1942 |
publishDateSort | 1942 |
publisher | Springer |
record_format | marc |
series2 | [Ergebnisse der Mathematik und ihrer Grenzgebiete / Alte Folge] |
spelling | Szőkefalvi-Nagy, Béla 1913-1998 Verfasser (DE-588)123323371 aut Spektraldarstellung linearer Transformationen des Hilbertschen Raumes von Béla v. Sz. Nagy Berlin Springer 1942 IV, 80 S. txt rdacontent n rdamedia nc rdacarrier [Ergebnisse der Mathematik und ihrer Grenzgebiete / Alte Folge] 5,5 Hilbert space Transformations (Mathematics) Spektraldarstellung (DE-588)4182162-2 gnd rswk-swf Hilbert-Raum (DE-588)4159850-7 gnd rswk-swf Funktionalanalysis (DE-588)4018916-8 gnd rswk-swf Lineare Transformation (DE-588)4167712-2 gnd rswk-swf Eigenwertproblem (DE-588)4013802-1 gnd rswk-swf Linearer Operator (DE-588)4167721-3 gnd rswk-swf Spektraltheorie (DE-588)4116561-5 gnd rswk-swf Lineare Transformation (DE-588)4167712-2 s Hilbert-Raum (DE-588)4159850-7 s Spektraldarstellung (DE-588)4182162-2 s DE-604 Linearer Operator (DE-588)4167721-3 s Spektraltheorie (DE-588)4116561-5 s Eigenwertproblem (DE-588)4013802-1 s Funktionalanalysis (DE-588)4018916-8 s Alte Folge] [Ergebnisse der Mathematik und ihrer Grenzgebiete 5,5 (DE-604)BV020546983 5,5 |
spellingShingle | Szőkefalvi-Nagy, Béla 1913-1998 Spektraldarstellung linearer Transformationen des Hilbertschen Raumes Hilbert space Transformations (Mathematics) Spektraldarstellung (DE-588)4182162-2 gnd Hilbert-Raum (DE-588)4159850-7 gnd Funktionalanalysis (DE-588)4018916-8 gnd Lineare Transformation (DE-588)4167712-2 gnd Eigenwertproblem (DE-588)4013802-1 gnd Linearer Operator (DE-588)4167721-3 gnd Spektraltheorie (DE-588)4116561-5 gnd |
subject_GND | (DE-588)4182162-2 (DE-588)4159850-7 (DE-588)4018916-8 (DE-588)4167712-2 (DE-588)4013802-1 (DE-588)4167721-3 (DE-588)4116561-5 |
title | Spektraldarstellung linearer Transformationen des Hilbertschen Raumes |
title_auth | Spektraldarstellung linearer Transformationen des Hilbertschen Raumes |
title_exact_search | Spektraldarstellung linearer Transformationen des Hilbertschen Raumes |
title_full | Spektraldarstellung linearer Transformationen des Hilbertschen Raumes von Béla v. Sz. Nagy |
title_fullStr | Spektraldarstellung linearer Transformationen des Hilbertschen Raumes von Béla v. Sz. Nagy |
title_full_unstemmed | Spektraldarstellung linearer Transformationen des Hilbertschen Raumes von Béla v. Sz. Nagy |
title_short | Spektraldarstellung linearer Transformationen des Hilbertschen Raumes |
title_sort | spektraldarstellung linearer transformationen des hilbertschen raumes |
topic | Hilbert space Transformations (Mathematics) Spektraldarstellung (DE-588)4182162-2 gnd Hilbert-Raum (DE-588)4159850-7 gnd Funktionalanalysis (DE-588)4018916-8 gnd Lineare Transformation (DE-588)4167712-2 gnd Eigenwertproblem (DE-588)4013802-1 gnd Linearer Operator (DE-588)4167721-3 gnd Spektraltheorie (DE-588)4116561-5 gnd |
topic_facet | Hilbert space Transformations (Mathematics) Spektraldarstellung Hilbert-Raum Funktionalanalysis Lineare Transformation Eigenwertproblem Linearer Operator Spektraltheorie |
volume_link | (DE-604)BV020546983 |
work_keys_str_mv | AT szokefalvinagybela spektraldarstellunglinearertransformationendeshilbertschenraumes |