The structure of decidable locally finite varieties:
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Buch |
Sprache: | German |
Veröffentlicht: |
Boston u. a.
Birkhäuser
1989
|
Ausgabe: | 1. print. |
Schriftenreihe: | Progress in mathematics
79. |
Schlagworte: | |
Beschreibung: | VIII, 212 S. |
ISBN: | 0817634398 3764334398 |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV006070603 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | t | ||
008 | 921030s1989 |||| 00||| ger d | ||
020 | |a 0817634398 |9 0-8176-3439-8 | ||
020 | |a 3764334398 |9 3-7643-3439-8 | ||
035 | |a (OCoLC)20295268 | ||
035 | |a (DE-599)BVBBV006070603 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a ger | |
049 | |a DE-703 |a DE-355 |a DE-11 | ||
050 | 0 | |a QA251 | |
082 | 0 | |a 512 |2 20 | |
084 | |a SK 130 |0 (DE-625)143216: |2 rvk | ||
084 | |a SK 240 |0 (DE-625)143226: |2 rvk | ||
084 | |a SK 350 |0 (DE-625)143233: |2 rvk | ||
084 | |a SK 370 |0 (DE-625)143234: |2 rvk | ||
100 | 1 | |a MacKenzie, Ralph |e Verfasser |4 aut | |
245 | 1 | 0 | |a The structure of decidable locally finite varieties |c Ralph McKenzie ; Matthew Valeriote |
250 | |a 1. print. | ||
264 | 1 | |a Boston u. a. |b Birkhäuser |c 1989 | |
300 | |a VIII, 212 S. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Progress in mathematics |v 79. | |
650 | 4 | |a Classes équationnelles | |
650 | 7 | |a Décidabilité |2 Jussieu | |
650 | 7 | |a Variété abélienne |2 Jussieu | |
650 | 7 | |a Variété localement finie |2 Jussieu | |
650 | 7 | |a Variétés (Algèbre universelle) |2 ram | |
650 | 4 | |a Varieties (Universal algebra) | |
650 | 0 | 7 | |a Universelle Algebra |0 (DE-588)4061777-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Lokal endliche gleichungsdefinierte Klasse |0 (DE-588)4228339-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Entscheidbarkeit |0 (DE-588)4152398-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Varietät |g Mathematik |0 (DE-588)4325475-5 |2 gnd |9 rswk-swf |
655 | 7 | |a Lokal endliche Mannigfaltigkeit |2 gnd |9 rswk-swf | |
689 | 0 | 0 | |a Lokal endliche Mannigfaltigkeit |A f |
689 | 0 | 1 | |a Entscheidbarkeit |0 (DE-588)4152398-2 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Lokal endliche gleichungsdefinierte Klasse |0 (DE-588)4228339-5 |D s |
689 | 1 | 1 | |a Entscheidbarkeit |0 (DE-588)4152398-2 |D s |
689 | 1 | |8 1\p |5 DE-604 | |
689 | 2 | 0 | |a Varietät |g Mathematik |0 (DE-588)4325475-5 |D s |
689 | 2 | |8 2\p |5 DE-604 | |
689 | 3 | 0 | |a Universelle Algebra |0 (DE-588)4061777-4 |D s |
689 | 3 | |8 3\p |5 DE-604 | |
700 | 1 | |a Valeriote, Matthew |e Verfasser |4 aut | |
830 | 0 | |a Progress in mathematics |v 79. |w (DE-604)BV000004120 |9 79 | |
999 | |a oai:aleph.bib-bvb.de:BVB01-003829936 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 3\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804120290360295424 |
---|---|
any_adam_object | |
author | MacKenzie, Ralph Valeriote, Matthew |
author_facet | MacKenzie, Ralph Valeriote, Matthew |
author_role | aut aut |
author_sort | MacKenzie, Ralph |
author_variant | r m rm m v mv |
building | Verbundindex |
bvnumber | BV006070603 |
callnumber-first | Q - Science |
callnumber-label | QA251 |
callnumber-raw | QA251 |
callnumber-search | QA251 |
callnumber-sort | QA 3251 |
callnumber-subject | QA - Mathematics |
classification_rvk | SK 130 SK 240 SK 350 SK 370 |
ctrlnum | (OCoLC)20295268 (DE-599)BVBBV006070603 |
dewey-full | 512 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 512 - Algebra |
dewey-raw | 512 |
dewey-search | 512 |
dewey-sort | 3512 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
edition | 1. print. |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02579nam a2200673 cb4500</leader><controlfield tag="001">BV006070603</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">921030s1989 |||| 00||| ger d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0817634398</subfield><subfield code="9">0-8176-3439-8</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3764334398</subfield><subfield code="9">3-7643-3439-8</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)20295268</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV006070603</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">ger</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-703</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-11</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA251</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">512</subfield><subfield code="2">20</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 130</subfield><subfield code="0">(DE-625)143216:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 240</subfield><subfield code="0">(DE-625)143226:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 350</subfield><subfield code="0">(DE-625)143233:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 370</subfield><subfield code="0">(DE-625)143234:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">MacKenzie, Ralph</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">The structure of decidable locally finite varieties</subfield><subfield code="c">Ralph McKenzie ; Matthew Valeriote</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">1. print.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Boston u. a.</subfield><subfield code="b">Birkhäuser</subfield><subfield code="c">1989</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">VIII, 212 S.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Progress in mathematics</subfield><subfield code="v">79.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Classes équationnelles</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Décidabilité</subfield><subfield code="2">Jussieu</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Variété abélienne</subfield><subfield code="2">Jussieu</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Variété localement finie</subfield><subfield code="2">Jussieu</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Variétés (Algèbre universelle)</subfield><subfield code="2">ram</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Varieties (Universal algebra)</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Universelle Algebra</subfield><subfield code="0">(DE-588)4061777-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Lokal endliche gleichungsdefinierte Klasse</subfield><subfield code="0">(DE-588)4228339-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Entscheidbarkeit</subfield><subfield code="0">(DE-588)4152398-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Varietät</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4325475-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="a">Lokal endliche Mannigfaltigkeit</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Lokal endliche Mannigfaltigkeit</subfield><subfield code="A">f</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Entscheidbarkeit</subfield><subfield code="0">(DE-588)4152398-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Lokal endliche gleichungsdefinierte Klasse</subfield><subfield code="0">(DE-588)4228339-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Entscheidbarkeit</subfield><subfield code="0">(DE-588)4152398-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Varietät</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4325475-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="3" ind2="0"><subfield code="a">Universelle Algebra</subfield><subfield code="0">(DE-588)4061777-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="3" ind2=" "><subfield code="8">3\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Valeriote, Matthew</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Progress in mathematics</subfield><subfield code="v">79.</subfield><subfield code="w">(DE-604)BV000004120</subfield><subfield code="9">79</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-003829936</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">3\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
genre | Lokal endliche Mannigfaltigkeit gnd |
genre_facet | Lokal endliche Mannigfaltigkeit |
id | DE-604.BV006070603 |
illustrated | Not Illustrated |
indexdate | 2024-07-09T16:39:44Z |
institution | BVB |
isbn | 0817634398 3764334398 |
language | German |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-003829936 |
oclc_num | 20295268 |
open_access_boolean | |
owner | DE-703 DE-355 DE-BY-UBR DE-11 |
owner_facet | DE-703 DE-355 DE-BY-UBR DE-11 |
physical | VIII, 212 S. |
publishDate | 1989 |
publishDateSearch | 1989 |
publishDateSort | 1989 |
publisher | Birkhäuser |
record_format | marc |
series | Progress in mathematics |
series2 | Progress in mathematics |
spelling | MacKenzie, Ralph Verfasser aut The structure of decidable locally finite varieties Ralph McKenzie ; Matthew Valeriote 1. print. Boston u. a. Birkhäuser 1989 VIII, 212 S. txt rdacontent n rdamedia nc rdacarrier Progress in mathematics 79. Classes équationnelles Décidabilité Jussieu Variété abélienne Jussieu Variété localement finie Jussieu Variétés (Algèbre universelle) ram Varieties (Universal algebra) Universelle Algebra (DE-588)4061777-4 gnd rswk-swf Lokal endliche gleichungsdefinierte Klasse (DE-588)4228339-5 gnd rswk-swf Entscheidbarkeit (DE-588)4152398-2 gnd rswk-swf Varietät Mathematik (DE-588)4325475-5 gnd rswk-swf Lokal endliche Mannigfaltigkeit gnd rswk-swf Lokal endliche Mannigfaltigkeit f Entscheidbarkeit (DE-588)4152398-2 s DE-604 Lokal endliche gleichungsdefinierte Klasse (DE-588)4228339-5 s 1\p DE-604 Varietät Mathematik (DE-588)4325475-5 s 2\p DE-604 Universelle Algebra (DE-588)4061777-4 s 3\p DE-604 Valeriote, Matthew Verfasser aut Progress in mathematics 79. (DE-604)BV000004120 79 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 3\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | MacKenzie, Ralph Valeriote, Matthew The structure of decidable locally finite varieties Progress in mathematics Classes équationnelles Décidabilité Jussieu Variété abélienne Jussieu Variété localement finie Jussieu Variétés (Algèbre universelle) ram Varieties (Universal algebra) Universelle Algebra (DE-588)4061777-4 gnd Lokal endliche gleichungsdefinierte Klasse (DE-588)4228339-5 gnd Entscheidbarkeit (DE-588)4152398-2 gnd Varietät Mathematik (DE-588)4325475-5 gnd |
subject_GND | (DE-588)4061777-4 (DE-588)4228339-5 (DE-588)4152398-2 (DE-588)4325475-5 |
title | The structure of decidable locally finite varieties |
title_auth | The structure of decidable locally finite varieties |
title_exact_search | The structure of decidable locally finite varieties |
title_full | The structure of decidable locally finite varieties Ralph McKenzie ; Matthew Valeriote |
title_fullStr | The structure of decidable locally finite varieties Ralph McKenzie ; Matthew Valeriote |
title_full_unstemmed | The structure of decidable locally finite varieties Ralph McKenzie ; Matthew Valeriote |
title_short | The structure of decidable locally finite varieties |
title_sort | the structure of decidable locally finite varieties |
topic | Classes équationnelles Décidabilité Jussieu Variété abélienne Jussieu Variété localement finie Jussieu Variétés (Algèbre universelle) ram Varieties (Universal algebra) Universelle Algebra (DE-588)4061777-4 gnd Lokal endliche gleichungsdefinierte Klasse (DE-588)4228339-5 gnd Entscheidbarkeit (DE-588)4152398-2 gnd Varietät Mathematik (DE-588)4325475-5 gnd |
topic_facet | Classes équationnelles Décidabilité Variété abélienne Variété localement finie Variétés (Algèbre universelle) Varieties (Universal algebra) Universelle Algebra Lokal endliche gleichungsdefinierte Klasse Entscheidbarkeit Varietät Mathematik Lokal endliche Mannigfaltigkeit |
volume_link | (DE-604)BV000004120 |
work_keys_str_mv | AT mackenzieralph thestructureofdecidablelocallyfinitevarieties AT valeriotematthew thestructureofdecidablelocallyfinitevarieties |