Classical potential theory and its probabilistic counterpart:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
New York ; Berlin ; Heidelberg ; Tokyo
Springer
[1984]
|
Schriftenreihe: | Die Grundlehren der mathematischen Wissenschaften
262 |
Schlagworte: | |
Beschreibung: | xxiii, 846 Seiten |
ISBN: | 0387908811 3540908811 9781461297383 9781461252085 |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV006011045 | ||
003 | DE-604 | ||
005 | 20240328 | ||
007 | t | ||
008 | 921030s1984 |||| 00||| eng d | ||
020 | |a 0387908811 |9 0-387-90881-1 | ||
020 | |a 3540908811 |9 3-540-90881-1 | ||
020 | |a 9781461297383 |c Print |9 978-1-4612-9738-3 | ||
020 | |a 9781461252085 |c Online |9 978-1-4612-5208-5 | ||
035 | |a (OCoLC)243732429 | ||
035 | |a (DE-599)BVBBV006011045 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-703 |a DE-12 |a DE-91G |a DE-384 |a DE-154 |a DE-739 |a DE-355 |a DE-824 |a DE-29T |a DE-19 |a DE-634 |a DE-83 |a DE-188 |a DE-706 | ||
050 | 0 | |a QA404.7 | |
082 | 0 | |a 515.7 |2 19 | |
084 | |a SK 500 |0 (DE-625)143243: |2 rvk | ||
084 | |a SK 540 |0 (DE-625)143245: |2 rvk | ||
084 | |a SK 820 |0 (DE-625)143258: |2 rvk | ||
084 | |a 60J45 |2 msc/1980 | ||
084 | |a 31-02 |2 msc/1980 | ||
084 | |a 60-02 |2 msc/1980 | ||
084 | |a MAT 607f |2 stub | ||
084 | |a MAT 310f |2 stub | ||
100 | 1 | |a Doob, Joseph L. |d 1910-2004 |0 (DE-588)12778022X |4 aut | |
245 | 1 | 0 | |a Classical potential theory and its probabilistic counterpart |c J. L. Doob |
264 | 1 | |a New York ; Berlin ; Heidelberg ; Tokyo |b Springer |c [1984] | |
264 | 4 | |c © 1984 | |
300 | |a xxiii, 846 Seiten | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Die Grundlehren der mathematischen Wissenschaften |v 262 | |
650 | 4 | |a Fonctions harmoniques | |
650 | 7 | |a Martingalen |2 gtt | |
650 | 4 | |a Martingales (Mathématiques) | |
650 | 7 | |a Potentiaaltheorie |2 gtt | |
650 | 4 | |a Potentiel, Théorie du | |
650 | 4 | |a Harmonic functions | |
650 | 4 | |a Martingales (Mathematics) | |
650 | 4 | |a Potential theory (Mathematics) | |
650 | 0 | 7 | |a Stochastischer Prozess |0 (DE-588)4057630-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Potenzialtheorie |0 (DE-588)4046939-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Wahrscheinlichkeitsrechnung |0 (DE-588)4064324-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Martingaltheorie |0 (DE-588)4168982-3 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Martingal |0 (DE-588)4126466-6 |2 gnd |9 rswk-swf |
653 | 0 | |a Potentialtheorie | |
653 | 0 | |a Wahrscheinlichkeitstheoretische Potentialtheorie | |
653 | 0 | |a Harmonische Funktion | |
653 | 0 | |a Martingal | |
689 | 0 | 0 | |a Potenzialtheorie |0 (DE-588)4046939-6 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Potenzialtheorie |0 (DE-588)4046939-6 |D s |
689 | 1 | 1 | |a Martingaltheorie |0 (DE-588)4168982-3 |D s |
689 | 1 | |5 DE-604 | |
689 | 2 | 0 | |a Potenzialtheorie |0 (DE-588)4046939-6 |D s |
689 | 2 | 1 | |a Martingal |0 (DE-588)4126466-6 |D s |
689 | 2 | 2 | |a Wahrscheinlichkeitsrechnung |0 (DE-588)4064324-4 |D s |
689 | 2 | 3 | |a Stochastischer Prozess |0 (DE-588)4057630-9 |D s |
689 | 2 | |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe |z 978-1-4612-9738-3 |
830 | 0 | |a Die Grundlehren der mathematischen Wissenschaften |v 262 |w (DE-604)BV000000395 |9 262 | |
999 | |a oai:aleph.bib-bvb.de:BVB01-003779334 |
Datensatz im Suchindex
_version_ | 1804120217078464512 |
---|---|
any_adam_object | |
author | Doob, Joseph L. 1910-2004 |
author_GND | (DE-588)12778022X |
author_facet | Doob, Joseph L. 1910-2004 |
author_role | aut |
author_sort | Doob, Joseph L. 1910-2004 |
author_variant | j l d jl jld |
building | Verbundindex |
bvnumber | BV006011045 |
callnumber-first | Q - Science |
callnumber-label | QA404 |
callnumber-raw | QA404.7 |
callnumber-search | QA404.7 |
callnumber-sort | QA 3404.7 |
callnumber-subject | QA - Mathematics |
classification_rvk | SK 500 SK 540 SK 820 |
classification_tum | MAT 607f MAT 310f |
ctrlnum | (OCoLC)243732429 (DE-599)BVBBV006011045 |
dewey-full | 515.7 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515.7 |
dewey-search | 515.7 |
dewey-sort | 3515.7 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02919nam a2200781 cb4500</leader><controlfield tag="001">BV006011045</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20240328 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">921030s1984 |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0387908811</subfield><subfield code="9">0-387-90881-1</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3540908811</subfield><subfield code="9">3-540-90881-1</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781461297383</subfield><subfield code="c">Print</subfield><subfield code="9">978-1-4612-9738-3</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781461252085</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-4612-5208-5</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)243732429</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV006011045</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-703</subfield><subfield code="a">DE-12</subfield><subfield code="a">DE-91G</subfield><subfield code="a">DE-384</subfield><subfield code="a">DE-154</subfield><subfield code="a">DE-739</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-824</subfield><subfield code="a">DE-29T</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-634</subfield><subfield code="a">DE-83</subfield><subfield code="a">DE-188</subfield><subfield code="a">DE-706</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA404.7</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515.7</subfield><subfield code="2">19</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 500</subfield><subfield code="0">(DE-625)143243:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 540</subfield><subfield code="0">(DE-625)143245:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 820</subfield><subfield code="0">(DE-625)143258:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">60J45</subfield><subfield code="2">msc/1980</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">31-02</subfield><subfield code="2">msc/1980</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">60-02</subfield><subfield code="2">msc/1980</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 607f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 310f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Doob, Joseph L.</subfield><subfield code="d">1910-2004</subfield><subfield code="0">(DE-588)12778022X</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Classical potential theory and its probabilistic counterpart</subfield><subfield code="c">J. L. Doob</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York ; Berlin ; Heidelberg ; Tokyo</subfield><subfield code="b">Springer</subfield><subfield code="c">[1984]</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">© 1984</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">xxiii, 846 Seiten</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Die Grundlehren der mathematischen Wissenschaften</subfield><subfield code="v">262</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fonctions harmoniques</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Martingalen</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Martingales (Mathématiques)</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Potentiaaltheorie</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Potentiel, Théorie du</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Harmonic functions</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Martingales (Mathematics)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Potential theory (Mathematics)</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Stochastischer Prozess</subfield><subfield code="0">(DE-588)4057630-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Potenzialtheorie</subfield><subfield code="0">(DE-588)4046939-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Wahrscheinlichkeitsrechnung</subfield><subfield code="0">(DE-588)4064324-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Martingaltheorie</subfield><subfield code="0">(DE-588)4168982-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Martingal</subfield><subfield code="0">(DE-588)4126466-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Potentialtheorie</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Wahrscheinlichkeitstheoretische Potentialtheorie</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Harmonische Funktion</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Martingal</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Potenzialtheorie</subfield><subfield code="0">(DE-588)4046939-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Potenzialtheorie</subfield><subfield code="0">(DE-588)4046939-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Martingaltheorie</subfield><subfield code="0">(DE-588)4168982-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Potenzialtheorie</subfield><subfield code="0">(DE-588)4046939-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2="1"><subfield code="a">Martingal</subfield><subfield code="0">(DE-588)4126466-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2="2"><subfield code="a">Wahrscheinlichkeitsrechnung</subfield><subfield code="0">(DE-588)4064324-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2="3"><subfield code="a">Stochastischer Prozess</subfield><subfield code="0">(DE-588)4057630-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe</subfield><subfield code="z">978-1-4612-9738-3</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Die Grundlehren der mathematischen Wissenschaften</subfield><subfield code="v">262</subfield><subfield code="w">(DE-604)BV000000395</subfield><subfield code="9">262</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-003779334</subfield></datafield></record></collection> |
id | DE-604.BV006011045 |
illustrated | Not Illustrated |
indexdate | 2024-07-09T16:38:34Z |
institution | BVB |
isbn | 0387908811 3540908811 9781461297383 9781461252085 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-003779334 |
oclc_num | 243732429 |
open_access_boolean | |
owner | DE-703 DE-12 DE-91G DE-BY-TUM DE-384 DE-154 DE-739 DE-355 DE-BY-UBR DE-824 DE-29T DE-19 DE-BY-UBM DE-634 DE-83 DE-188 DE-706 |
owner_facet | DE-703 DE-12 DE-91G DE-BY-TUM DE-384 DE-154 DE-739 DE-355 DE-BY-UBR DE-824 DE-29T DE-19 DE-BY-UBM DE-634 DE-83 DE-188 DE-706 |
physical | xxiii, 846 Seiten |
publishDate | 1984 |
publishDateSearch | 1984 |
publishDateSort | 1984 |
publisher | Springer |
record_format | marc |
series | Die Grundlehren der mathematischen Wissenschaften |
series2 | Die Grundlehren der mathematischen Wissenschaften |
spelling | Doob, Joseph L. 1910-2004 (DE-588)12778022X aut Classical potential theory and its probabilistic counterpart J. L. Doob New York ; Berlin ; Heidelberg ; Tokyo Springer [1984] © 1984 xxiii, 846 Seiten txt rdacontent n rdamedia nc rdacarrier Die Grundlehren der mathematischen Wissenschaften 262 Fonctions harmoniques Martingalen gtt Martingales (Mathématiques) Potentiaaltheorie gtt Potentiel, Théorie du Harmonic functions Martingales (Mathematics) Potential theory (Mathematics) Stochastischer Prozess (DE-588)4057630-9 gnd rswk-swf Potenzialtheorie (DE-588)4046939-6 gnd rswk-swf Wahrscheinlichkeitsrechnung (DE-588)4064324-4 gnd rswk-swf Martingaltheorie (DE-588)4168982-3 gnd rswk-swf Martingal (DE-588)4126466-6 gnd rswk-swf Potentialtheorie Wahrscheinlichkeitstheoretische Potentialtheorie Harmonische Funktion Martingal Potenzialtheorie (DE-588)4046939-6 s DE-604 Martingaltheorie (DE-588)4168982-3 s Martingal (DE-588)4126466-6 s Wahrscheinlichkeitsrechnung (DE-588)4064324-4 s Stochastischer Prozess (DE-588)4057630-9 s Erscheint auch als Online-Ausgabe 978-1-4612-9738-3 Die Grundlehren der mathematischen Wissenschaften 262 (DE-604)BV000000395 262 |
spellingShingle | Doob, Joseph L. 1910-2004 Classical potential theory and its probabilistic counterpart Die Grundlehren der mathematischen Wissenschaften Fonctions harmoniques Martingalen gtt Martingales (Mathématiques) Potentiaaltheorie gtt Potentiel, Théorie du Harmonic functions Martingales (Mathematics) Potential theory (Mathematics) Stochastischer Prozess (DE-588)4057630-9 gnd Potenzialtheorie (DE-588)4046939-6 gnd Wahrscheinlichkeitsrechnung (DE-588)4064324-4 gnd Martingaltheorie (DE-588)4168982-3 gnd Martingal (DE-588)4126466-6 gnd |
subject_GND | (DE-588)4057630-9 (DE-588)4046939-6 (DE-588)4064324-4 (DE-588)4168982-3 (DE-588)4126466-6 |
title | Classical potential theory and its probabilistic counterpart |
title_auth | Classical potential theory and its probabilistic counterpart |
title_exact_search | Classical potential theory and its probabilistic counterpart |
title_full | Classical potential theory and its probabilistic counterpart J. L. Doob |
title_fullStr | Classical potential theory and its probabilistic counterpart J. L. Doob |
title_full_unstemmed | Classical potential theory and its probabilistic counterpart J. L. Doob |
title_short | Classical potential theory and its probabilistic counterpart |
title_sort | classical potential theory and its probabilistic counterpart |
topic | Fonctions harmoniques Martingalen gtt Martingales (Mathématiques) Potentiaaltheorie gtt Potentiel, Théorie du Harmonic functions Martingales (Mathematics) Potential theory (Mathematics) Stochastischer Prozess (DE-588)4057630-9 gnd Potenzialtheorie (DE-588)4046939-6 gnd Wahrscheinlichkeitsrechnung (DE-588)4064324-4 gnd Martingaltheorie (DE-588)4168982-3 gnd Martingal (DE-588)4126466-6 gnd |
topic_facet | Fonctions harmoniques Martingalen Martingales (Mathématiques) Potentiaaltheorie Potentiel, Théorie du Harmonic functions Martingales (Mathematics) Potential theory (Mathematics) Stochastischer Prozess Potenzialtheorie Wahrscheinlichkeitsrechnung Martingaltheorie Martingal |
volume_link | (DE-604)BV000000395 |
work_keys_str_mv | AT doobjosephl classicalpotentialtheoryanditsprobabilisticcounterpart |