Les hierarchilongueurs:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English French |
Veröffentlicht: |
Kingston
Queen's Univ.
1980
|
Schriftenreihe: | Queen's papers in pure and applied mathematics.
55 |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | II, 65, 84 S. |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV005952105 | ||
003 | DE-604 | ||
005 | 20120718 | ||
007 | t | ||
008 | 921030s1980 |||| 00||| eng d | ||
035 | |a (OCoLC)36520901 | ||
035 | |a (DE-599)BVBBV005952105 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng |a fre | |
049 | |a DE-703 |a DE-355 |a DE-19 |a DE-91G |a DE-83 | ||
050 | 0 | |a QA3 | |
082 | 0 | |a 512/.4 |2 21 | |
082 | 0 | |a 510 |2 21 | |
084 | |a SI 380 |0 (DE-625)143137: |2 rvk | ||
084 | |a 13Cxx |2 msc | ||
100 | 1 | |a Guennoum, Mostafa |e Verfasser |4 aut | |
245 | 1 | 0 | |a Les hierarchilongueurs |
264 | 1 | |a Kingston |b Queen's Univ. |c 1980 | |
300 | |a II, 65, 84 S. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Queen's papers in pure and applied mathematics. |v 55 | |
650 | 4 | |a Anneaux (Algèbre) | |
650 | 7 | |a Anneaux (algèbre) |2 ram | |
650 | 7 | |a Catégorie atomique |2 Jussieu | |
650 | 7 | |a Hiérarchilongueur |2 Jussieu | |
650 | 4 | |a Rings (Algebra) | |
650 | 0 | 7 | |a Grothendieck-Gruppe |0 (DE-588)4158321-8 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Grothendieck-Gruppe |0 (DE-588)4158321-8 |D s |
689 | 0 | |5 DE-604 | |
830 | 0 | |a Queen's papers in pure and applied mathematics. |v 55 |w (DE-604)BV001889470 |9 55 | |
856 | 4 | 2 | |m HBZ Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=003731928&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-003731928 |
Datensatz im Suchindex
_version_ | 1804120147507544064 |
---|---|
adam_text | CONTENTS
I MACROTHEORIE DES HIERARCHILONGUEURS
INTRODUCTION 1.0
§1. NOTIONS ET PROPRIETES IMMEDIATE 1.2
1. Hierarchilongueurs 1.2
2. Hierarchilongueurs particulieres 1.3
3. Quelques proprietes 1.4
4. Changement d anneau 1.7
5. Finesse 1.8
6. Composition 1.8
7. Hierarchicote 1.10
§2. REPRESENTATION DES HIERARCHILONGUEURS I.11
1. Cas general 1.11
2. Cas symetrisable 1.17
§3. HIERARCHILONGUEURS SYMETRISABLES MULTILINEAIRES ET POLYLINEAIRES . . 1.26
1. Construction des bases 1.26
2. Interpretation parametrique 1.28
3. Representation et caracterisation des longueurs 1.30
4. Quotient lineaire 1.32
5. Multilinearite polylinearite 1.33
§4. HIERARCHILONGUEURS TENSORIELLES 1.34
1. Tensorisation 1.35
2. Representation 1.36
§5. HIERARCHILONGUEURS SEPARANTES 1.39
§6. HIERARCHILONGUEURS PARTIELLES 1.46
§7. CATEGORIES ATOMIQUES 1.48
II ENDOTHEORIE DES HIERARCHILONGUEURS
INTRODUCTION II.0
§1. HIERARCHILONGUEURS DE L EBAUCHE II.3
1. Preliminaires II.3
2. Representation II. 3
3. Anneaux lombaires II.7
4. Radicalisation II.8
§2. HIERARCHILONGUEURS GERMINALES . II.9
1. Generalities II. 9
2. Hierarchimesure 11.11
3. Representation 11.13
4. Anneaux lobes 11.18
§3. HIERARCHILONGUEURS GERMINALES MONOSYMETRISABLES 11.22
1. Representation 11.22
2. Cas Particuliers 11.25
3. Hierarchilongueurs monosubordonees et comonotenninales
___a_une^ monosymetrisable lineaire ,. . . 11.28
4. Representation et caracterisation des monolongueurs 11.30
5. Monoquotient lineaire 11.31
§4. HIERARCHILONGUEURS GERMINALES VALUATIVES .... . 11.32
1. Preliminaires 11.32
2. Cas general 11.33
3. Cas monosymetrisable 11.36
§5. HIERARCHIVALUATIONS ADDITIVES 11.37
1. Generalites 11.37
2. Representation 11.39
3. Appointage 11.42
4. Stabilite 11.43
5. Appropriation 11.44
6. K. if. 0 domaines 11.46
7. Multilinearite polylinearite 11.50
8. Diviseurs 11.57
9. Quelques classes remarquables de A.ir: «^ domaines 11.59
10. Prolongement 11.63
6. INTERFERENCE ENTRE HIERARCHILVALUATIONS ADDITIVES ET
HIERARCHILONGUEURS GERMINALES VALUATIVES 11.64
1. Cas general 11.64
2. Anneaux loges 11.65
3. Anneaux lobes 11.68
4. monosymetrisable sue un A V.a. domaine de Dedekind . . 11.70
5. Restriction aux modules de type fini 11.76
|
any_adam_object | 1 |
author | Guennoum, Mostafa |
author_facet | Guennoum, Mostafa |
author_role | aut |
author_sort | Guennoum, Mostafa |
author_variant | m g mg |
building | Verbundindex |
bvnumber | BV005952105 |
callnumber-first | Q - Science |
callnumber-label | QA3 |
callnumber-raw | QA3 |
callnumber-search | QA3 |
callnumber-sort | QA 13 |
callnumber-subject | QA - Mathematics |
classification_rvk | SI 380 |
ctrlnum | (OCoLC)36520901 (DE-599)BVBBV005952105 |
dewey-full | 512/.4 510 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 512 - Algebra 510 - Mathematics |
dewey-raw | 512/.4 510 |
dewey-search | 512/.4 510 |
dewey-sort | 3512 14 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01559nam a2200433 cb4500</leader><controlfield tag="001">BV005952105</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20120718 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">921030s1980 |||| 00||| eng d</controlfield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)36520901</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV005952105</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield><subfield code="a">fre</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-703</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-91G</subfield><subfield code="a">DE-83</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA3</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">512/.4</subfield><subfield code="2">21</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">510</subfield><subfield code="2">21</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SI 380</subfield><subfield code="0">(DE-625)143137:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">13Cxx</subfield><subfield code="2">msc</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Guennoum, Mostafa</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Les hierarchilongueurs</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Kingston</subfield><subfield code="b">Queen's Univ.</subfield><subfield code="c">1980</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">II, 65, 84 S.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Queen's papers in pure and applied mathematics.</subfield><subfield code="v">55</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Anneaux (Algèbre)</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Anneaux (algèbre)</subfield><subfield code="2">ram</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Catégorie atomique</subfield><subfield code="2">Jussieu</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Hiérarchilongueur</subfield><subfield code="2">Jussieu</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Rings (Algebra)</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Grothendieck-Gruppe</subfield><subfield code="0">(DE-588)4158321-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Grothendieck-Gruppe</subfield><subfield code="0">(DE-588)4158321-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Queen's papers in pure and applied mathematics.</subfield><subfield code="v">55</subfield><subfield code="w">(DE-604)BV001889470</subfield><subfield code="9">55</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HBZ Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=003731928&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-003731928</subfield></datafield></record></collection> |
id | DE-604.BV005952105 |
illustrated | Not Illustrated |
indexdate | 2024-07-09T16:37:28Z |
institution | BVB |
language | English French |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-003731928 |
oclc_num | 36520901 |
open_access_boolean | |
owner | DE-703 DE-355 DE-BY-UBR DE-19 DE-BY-UBM DE-91G DE-BY-TUM DE-83 |
owner_facet | DE-703 DE-355 DE-BY-UBR DE-19 DE-BY-UBM DE-91G DE-BY-TUM DE-83 |
physical | II, 65, 84 S. |
publishDate | 1980 |
publishDateSearch | 1980 |
publishDateSort | 1980 |
publisher | Queen's Univ. |
record_format | marc |
series | Queen's papers in pure and applied mathematics. |
series2 | Queen's papers in pure and applied mathematics. |
spelling | Guennoum, Mostafa Verfasser aut Les hierarchilongueurs Kingston Queen's Univ. 1980 II, 65, 84 S. txt rdacontent n rdamedia nc rdacarrier Queen's papers in pure and applied mathematics. 55 Anneaux (Algèbre) Anneaux (algèbre) ram Catégorie atomique Jussieu Hiérarchilongueur Jussieu Rings (Algebra) Grothendieck-Gruppe (DE-588)4158321-8 gnd rswk-swf Grothendieck-Gruppe (DE-588)4158321-8 s DE-604 Queen's papers in pure and applied mathematics. 55 (DE-604)BV001889470 55 HBZ Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=003731928&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Guennoum, Mostafa Les hierarchilongueurs Queen's papers in pure and applied mathematics. Anneaux (Algèbre) Anneaux (algèbre) ram Catégorie atomique Jussieu Hiérarchilongueur Jussieu Rings (Algebra) Grothendieck-Gruppe (DE-588)4158321-8 gnd |
subject_GND | (DE-588)4158321-8 |
title | Les hierarchilongueurs |
title_auth | Les hierarchilongueurs |
title_exact_search | Les hierarchilongueurs |
title_full | Les hierarchilongueurs |
title_fullStr | Les hierarchilongueurs |
title_full_unstemmed | Les hierarchilongueurs |
title_short | Les hierarchilongueurs |
title_sort | les hierarchilongueurs |
topic | Anneaux (Algèbre) Anneaux (algèbre) ram Catégorie atomique Jussieu Hiérarchilongueur Jussieu Rings (Algebra) Grothendieck-Gruppe (DE-588)4158321-8 gnd |
topic_facet | Anneaux (Algèbre) Anneaux (algèbre) Catégorie atomique Hiérarchilongueur Rings (Algebra) Grothendieck-Gruppe |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=003731928&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
volume_link | (DE-604)BV001889470 |
work_keys_str_mv | AT guennoummostafa leshierarchilongueurs |