MmB schemes on regular triangular meshes for 2-D conservation laws:
Abstract: "In this paper, two classes of second order accurate high resolution schemes are presented on regular triangular meshes for initial value problem of two dimensional conservation laws. The first class are called Runge-Kutta-FVM MmB (locally Maximum-minimum Bounds preserving) schemes, w...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Berlin
Konrad-Zuse-Zentrum für Informationstechnik
1992
|
Schriftenreihe: | Konrad-Zuse-Zentrum für Informationstechnik <Berlin>: Preprint SC
1992,17 |
Schlagworte: | |
Zusammenfassung: | Abstract: "In this paper, two classes of second order accurate high resolution schemes are presented on regular triangular meshes for initial value problem of two dimensional conservation laws. The first class are called Runge-Kutta-FVM MmB (locally Maximum-minimum Bounds preserving) schemes, which are first discretized by (FVM) finite volume method in space direction and modifying numerical fluxes, and then by Runge-Kutta methods in time direction; The second class, constructed by Taylor expansion in time, and then by FVM methods and making modifications to fluxes, are called Taylor-FVM MmB schemes. MmB properties of both schemes are proved for 2-D scalar conservation law Numerical results are given for Riemann problems of 2-D scalar conservation law and 2-D gas dynamics systems and some comparisons are made between the two clases of the schemes. |
Beschreibung: | 36 S. |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV005907768 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | t | ||
008 | 921223s1992 |||| 00||| eng d | ||
035 | |a (OCoLC)31262381 | ||
035 | |a (DE-599)BVBBV005907768 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
049 | |a DE-12 | ||
100 | 1 | |a Yang, Shuli |e Verfasser |4 aut | |
245 | 1 | 0 | |a MmB schemes on regular triangular meshes for 2-D conservation laws |c Shuli Yang |
264 | 1 | |a Berlin |b Konrad-Zuse-Zentrum für Informationstechnik |c 1992 | |
300 | |a 36 S. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Konrad-Zuse-Zentrum für Informationstechnik <Berlin>: Preprint SC |v 1992,17 | |
520 | 3 | |a Abstract: "In this paper, two classes of second order accurate high resolution schemes are presented on regular triangular meshes for initial value problem of two dimensional conservation laws. The first class are called Runge-Kutta-FVM MmB (locally Maximum-minimum Bounds preserving) schemes, which are first discretized by (FVM) finite volume method in space direction and modifying numerical fluxes, and then by Runge-Kutta methods in time direction; The second class, constructed by Taylor expansion in time, and then by FVM methods and making modifications to fluxes, are called Taylor-FVM MmB schemes. MmB properties of both schemes are proved for 2-D scalar conservation law | |
520 | 3 | |a Numerical results are given for Riemann problems of 2-D scalar conservation law and 2-D gas dynamics systems and some comparisons are made between the two clases of the schemes. | |
650 | 4 | |a Conservation laws (Mathematics) | |
650 | 4 | |a Runge-Kutta formulas | |
830 | 0 | |a Konrad-Zuse-Zentrum für Informationstechnik <Berlin>: Preprint SC |v 1992,17 |w (DE-604)BV004801715 |9 1992,17 | |
999 | |a oai:aleph.bib-bvb.de:BVB01-003697861 |
Datensatz im Suchindex
_version_ | 1804120096327598080 |
---|---|
any_adam_object | |
author | Yang, Shuli |
author_facet | Yang, Shuli |
author_role | aut |
author_sort | Yang, Shuli |
author_variant | s y sy |
building | Verbundindex |
bvnumber | BV005907768 |
ctrlnum | (OCoLC)31262381 (DE-599)BVBBV005907768 |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01885nam a2200313 cb4500</leader><controlfield tag="001">BV005907768</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">921223s1992 |||| 00||| eng d</controlfield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)31262381</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV005907768</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Yang, Shuli</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">MmB schemes on regular triangular meshes for 2-D conservation laws</subfield><subfield code="c">Shuli Yang</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin</subfield><subfield code="b">Konrad-Zuse-Zentrum für Informationstechnik</subfield><subfield code="c">1992</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">36 S.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Konrad-Zuse-Zentrum für Informationstechnik <Berlin>: Preprint SC</subfield><subfield code="v">1992,17</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">Abstract: "In this paper, two classes of second order accurate high resolution schemes are presented on regular triangular meshes for initial value problem of two dimensional conservation laws. The first class are called Runge-Kutta-FVM MmB (locally Maximum-minimum Bounds preserving) schemes, which are first discretized by (FVM) finite volume method in space direction and modifying numerical fluxes, and then by Runge-Kutta methods in time direction; The second class, constructed by Taylor expansion in time, and then by FVM methods and making modifications to fluxes, are called Taylor-FVM MmB schemes. MmB properties of both schemes are proved for 2-D scalar conservation law</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">Numerical results are given for Riemann problems of 2-D scalar conservation law and 2-D gas dynamics systems and some comparisons are made between the two clases of the schemes.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Conservation laws (Mathematics)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Runge-Kutta formulas</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Konrad-Zuse-Zentrum für Informationstechnik <Berlin>: Preprint SC</subfield><subfield code="v">1992,17</subfield><subfield code="w">(DE-604)BV004801715</subfield><subfield code="9">1992,17</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-003697861</subfield></datafield></record></collection> |
id | DE-604.BV005907768 |
illustrated | Not Illustrated |
indexdate | 2024-07-09T16:36:39Z |
institution | BVB |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-003697861 |
oclc_num | 31262381 |
open_access_boolean | |
owner | DE-12 |
owner_facet | DE-12 |
physical | 36 S. |
publishDate | 1992 |
publishDateSearch | 1992 |
publishDateSort | 1992 |
publisher | Konrad-Zuse-Zentrum für Informationstechnik |
record_format | marc |
series | Konrad-Zuse-Zentrum für Informationstechnik <Berlin>: Preprint SC |
series2 | Konrad-Zuse-Zentrum für Informationstechnik <Berlin>: Preprint SC |
spelling | Yang, Shuli Verfasser aut MmB schemes on regular triangular meshes for 2-D conservation laws Shuli Yang Berlin Konrad-Zuse-Zentrum für Informationstechnik 1992 36 S. txt rdacontent n rdamedia nc rdacarrier Konrad-Zuse-Zentrum für Informationstechnik <Berlin>: Preprint SC 1992,17 Abstract: "In this paper, two classes of second order accurate high resolution schemes are presented on regular triangular meshes for initial value problem of two dimensional conservation laws. The first class are called Runge-Kutta-FVM MmB (locally Maximum-minimum Bounds preserving) schemes, which are first discretized by (FVM) finite volume method in space direction and modifying numerical fluxes, and then by Runge-Kutta methods in time direction; The second class, constructed by Taylor expansion in time, and then by FVM methods and making modifications to fluxes, are called Taylor-FVM MmB schemes. MmB properties of both schemes are proved for 2-D scalar conservation law Numerical results are given for Riemann problems of 2-D scalar conservation law and 2-D gas dynamics systems and some comparisons are made between the two clases of the schemes. Conservation laws (Mathematics) Runge-Kutta formulas Konrad-Zuse-Zentrum für Informationstechnik <Berlin>: Preprint SC 1992,17 (DE-604)BV004801715 1992,17 |
spellingShingle | Yang, Shuli MmB schemes on regular triangular meshes for 2-D conservation laws Konrad-Zuse-Zentrum für Informationstechnik <Berlin>: Preprint SC Conservation laws (Mathematics) Runge-Kutta formulas |
title | MmB schemes on regular triangular meshes for 2-D conservation laws |
title_auth | MmB schemes on regular triangular meshes for 2-D conservation laws |
title_exact_search | MmB schemes on regular triangular meshes for 2-D conservation laws |
title_full | MmB schemes on regular triangular meshes for 2-D conservation laws Shuli Yang |
title_fullStr | MmB schemes on regular triangular meshes for 2-D conservation laws Shuli Yang |
title_full_unstemmed | MmB schemes on regular triangular meshes for 2-D conservation laws Shuli Yang |
title_short | MmB schemes on regular triangular meshes for 2-D conservation laws |
title_sort | mmb schemes on regular triangular meshes for 2 d conservation laws |
topic | Conservation laws (Mathematics) Runge-Kutta formulas |
topic_facet | Conservation laws (Mathematics) Runge-Kutta formulas |
volume_link | (DE-604)BV004801715 |
work_keys_str_mv | AT yangshuli mmbschemesonregulartriangularmeshesfor2dconservationlaws |