The numerical solution of constrained Hamiltonian systems:
Abstract: "A Hamiltonian system subject to smooth constraints can typically be viewed as a Hamiltonian system on a manifold. Numerical computations, however, must be performed in R[superscript n]. In this paper, canonical transformations from 'Hamiltonian differential-algebraic equations...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Berlin
Konrad-Zuse-Zentrum für Informationstechnik
1992
|
Schriftenreihe: | Konrad-Zuse-Zentrum für Informationstechnik <Berlin>: Preprint SC
1992,16 |
Schlagworte: | |
Zusammenfassung: | Abstract: "A Hamiltonian system subject to smooth constraints can typically be viewed as a Hamiltonian system on a manifold. Numerical computations, however, must be performed in R[superscript n]. In this paper, canonical transformations from 'Hamiltonian differential-algebraic equations' to ODEs in Euclidean space are considered. In [symbol]2, canonical parameterizations or local charts are developed and it is shown how these can be computed in a practical framework. In [symbol]3 we consider the construction of unconstrained Hamiltonian ODE systems in the space in which the constraint manifold is embedded which preserve the constraint manifold as an integral invariant and whose flow reduces to the flow of the constrained system along the manifold It is shown that certain of these unconstrained Hamiltonian systems force Lyapunov stability of the constraint-invariants, while others lead to an unstable invariant. In [symbol]4, we compare various projection techniques which might be incorporated to better insure preservation of the constraint-invariants in the context of numerical discretization. Numerical experiments illustrate the degree to which the constraint and symplectic invariants are maintained under discretization of various formulations. |
Beschreibung: | 27 S. |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV005907752 | ||
003 | DE-604 | ||
005 | 19921223 | ||
007 | t | ||
008 | 921223s1992 |||| 00||| eng d | ||
035 | |a (OCoLC)31262386 | ||
035 | |a (DE-599)BVBBV005907752 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
049 | |a DE-12 | ||
100 | 1 | |a Leimkuhler, Benedict J. |e Verfasser |4 aut | |
245 | 1 | 0 | |a The numerical solution of constrained Hamiltonian systems |c B. Leimkuhler ; S. Reich |
264 | 1 | |a Berlin |b Konrad-Zuse-Zentrum für Informationstechnik |c 1992 | |
300 | |a 27 S. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Konrad-Zuse-Zentrum für Informationstechnik <Berlin>: Preprint SC |v 1992,16 | |
520 | 3 | |a Abstract: "A Hamiltonian system subject to smooth constraints can typically be viewed as a Hamiltonian system on a manifold. Numerical computations, however, must be performed in R[superscript n]. In this paper, canonical transformations from 'Hamiltonian differential-algebraic equations' to ODEs in Euclidean space are considered. In [symbol]2, canonical parameterizations or local charts are developed and it is shown how these can be computed in a practical framework. In [symbol]3 we consider the construction of unconstrained Hamiltonian ODE systems in the space in which the constraint manifold is embedded which preserve the constraint manifold as an integral invariant and whose flow reduces to the flow of the constrained system along the manifold | |
520 | 3 | |a It is shown that certain of these unconstrained Hamiltonian systems force Lyapunov stability of the constraint-invariants, while others lead to an unstable invariant. In [symbol]4, we compare various projection techniques which might be incorporated to better insure preservation of the constraint-invariants in the context of numerical discretization. Numerical experiments illustrate the degree to which the constraint and symplectic invariants are maintained under discretization of various formulations. | |
650 | 4 | |a Differential-algebraic equations | |
650 | 4 | |a Hamiltonian systems | |
700 | 1 | |a Reich, S. |e Verfasser |4 aut | |
830 | 0 | |a Konrad-Zuse-Zentrum für Informationstechnik <Berlin>: Preprint SC |v 1992,16 |w (DE-604)BV004801715 |9 1992,16 | |
999 | |a oai:aleph.bib-bvb.de:BVB01-003697847 |
Datensatz im Suchindex
_version_ | 1804120096315015168 |
---|---|
any_adam_object | |
author | Leimkuhler, Benedict J. Reich, S. |
author_facet | Leimkuhler, Benedict J. Reich, S. |
author_role | aut aut |
author_sort | Leimkuhler, Benedict J. |
author_variant | b j l bj bjl s r sr |
building | Verbundindex |
bvnumber | BV005907752 |
ctrlnum | (OCoLC)31262386 (DE-599)BVBBV005907752 |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02354nam a2200325 cb4500</leader><controlfield tag="001">BV005907752</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">19921223 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">921223s1992 |||| 00||| eng d</controlfield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)31262386</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV005907752</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Leimkuhler, Benedict J.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">The numerical solution of constrained Hamiltonian systems</subfield><subfield code="c">B. Leimkuhler ; S. Reich</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin</subfield><subfield code="b">Konrad-Zuse-Zentrum für Informationstechnik</subfield><subfield code="c">1992</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">27 S.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Konrad-Zuse-Zentrum für Informationstechnik <Berlin>: Preprint SC</subfield><subfield code="v">1992,16</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">Abstract: "A Hamiltonian system subject to smooth constraints can typically be viewed as a Hamiltonian system on a manifold. Numerical computations, however, must be performed in R[superscript n]. In this paper, canonical transformations from 'Hamiltonian differential-algebraic equations' to ODEs in Euclidean space are considered. In [symbol]2, canonical parameterizations or local charts are developed and it is shown how these can be computed in a practical framework. In [symbol]3 we consider the construction of unconstrained Hamiltonian ODE systems in the space in which the constraint manifold is embedded which preserve the constraint manifold as an integral invariant and whose flow reduces to the flow of the constrained system along the manifold</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">It is shown that certain of these unconstrained Hamiltonian systems force Lyapunov stability of the constraint-invariants, while others lead to an unstable invariant. In [symbol]4, we compare various projection techniques which might be incorporated to better insure preservation of the constraint-invariants in the context of numerical discretization. Numerical experiments illustrate the degree to which the constraint and symplectic invariants are maintained under discretization of various formulations.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differential-algebraic equations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hamiltonian systems</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Reich, S.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Konrad-Zuse-Zentrum für Informationstechnik <Berlin>: Preprint SC</subfield><subfield code="v">1992,16</subfield><subfield code="w">(DE-604)BV004801715</subfield><subfield code="9">1992,16</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-003697847</subfield></datafield></record></collection> |
id | DE-604.BV005907752 |
illustrated | Not Illustrated |
indexdate | 2024-07-09T16:36:39Z |
institution | BVB |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-003697847 |
oclc_num | 31262386 |
open_access_boolean | |
owner | DE-12 |
owner_facet | DE-12 |
physical | 27 S. |
publishDate | 1992 |
publishDateSearch | 1992 |
publishDateSort | 1992 |
publisher | Konrad-Zuse-Zentrum für Informationstechnik |
record_format | marc |
series | Konrad-Zuse-Zentrum für Informationstechnik <Berlin>: Preprint SC |
series2 | Konrad-Zuse-Zentrum für Informationstechnik <Berlin>: Preprint SC |
spelling | Leimkuhler, Benedict J. Verfasser aut The numerical solution of constrained Hamiltonian systems B. Leimkuhler ; S. Reich Berlin Konrad-Zuse-Zentrum für Informationstechnik 1992 27 S. txt rdacontent n rdamedia nc rdacarrier Konrad-Zuse-Zentrum für Informationstechnik <Berlin>: Preprint SC 1992,16 Abstract: "A Hamiltonian system subject to smooth constraints can typically be viewed as a Hamiltonian system on a manifold. Numerical computations, however, must be performed in R[superscript n]. In this paper, canonical transformations from 'Hamiltonian differential-algebraic equations' to ODEs in Euclidean space are considered. In [symbol]2, canonical parameterizations or local charts are developed and it is shown how these can be computed in a practical framework. In [symbol]3 we consider the construction of unconstrained Hamiltonian ODE systems in the space in which the constraint manifold is embedded which preserve the constraint manifold as an integral invariant and whose flow reduces to the flow of the constrained system along the manifold It is shown that certain of these unconstrained Hamiltonian systems force Lyapunov stability of the constraint-invariants, while others lead to an unstable invariant. In [symbol]4, we compare various projection techniques which might be incorporated to better insure preservation of the constraint-invariants in the context of numerical discretization. Numerical experiments illustrate the degree to which the constraint and symplectic invariants are maintained under discretization of various formulations. Differential-algebraic equations Hamiltonian systems Reich, S. Verfasser aut Konrad-Zuse-Zentrum für Informationstechnik <Berlin>: Preprint SC 1992,16 (DE-604)BV004801715 1992,16 |
spellingShingle | Leimkuhler, Benedict J. Reich, S. The numerical solution of constrained Hamiltonian systems Konrad-Zuse-Zentrum für Informationstechnik <Berlin>: Preprint SC Differential-algebraic equations Hamiltonian systems |
title | The numerical solution of constrained Hamiltonian systems |
title_auth | The numerical solution of constrained Hamiltonian systems |
title_exact_search | The numerical solution of constrained Hamiltonian systems |
title_full | The numerical solution of constrained Hamiltonian systems B. Leimkuhler ; S. Reich |
title_fullStr | The numerical solution of constrained Hamiltonian systems B. Leimkuhler ; S. Reich |
title_full_unstemmed | The numerical solution of constrained Hamiltonian systems B. Leimkuhler ; S. Reich |
title_short | The numerical solution of constrained Hamiltonian systems |
title_sort | the numerical solution of constrained hamiltonian systems |
topic | Differential-algebraic equations Hamiltonian systems |
topic_facet | Differential-algebraic equations Hamiltonian systems |
volume_link | (DE-604)BV004801715 |
work_keys_str_mv | AT leimkuhlerbenedictj thenumericalsolutionofconstrainedhamiltoniansystems AT reichs thenumericalsolutionofconstrainedhamiltoniansystems |