Symmetry groups and their applications:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | German |
Veröffentlicht: |
New York [u.a.]
Acad. Press
1972
|
Schriftenreihe: | Pure and applied mathematics
50 |
Schlagworte: | |
Beschreibung: | X, 432 S. graph. Darst. |
ISBN: | 0124974600 |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV005715279 | ||
003 | DE-604 | ||
005 | 19970821 | ||
007 | t | ||
008 | 921028s1972 d||| |||| 00||| ger d | ||
020 | |a 0124974600 |9 0-12-497460-0 | ||
035 | |a (OCoLC)601476463 | ||
035 | |a (DE-599)BVBBV005715279 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a ger | |
049 | |a DE-12 |a DE-703 |a DE-739 |a DE-355 |a DE-824 |a DE-29T |a DE-20 |a DE-91G |a DE-706 |a DE-11 |a DE-188 | ||
050 | 0 | |a QA3 | |
082 | 0 | |a 510/.8 | |
082 | 0 | |a 512/.2 |2 18 | |
084 | |a SK 260 |0 (DE-625)143227: |2 rvk | ||
100 | 1 | |a Miller, Willard |e Verfasser |4 aut | |
245 | 1 | 0 | |a Symmetry groups and their applications |c Willard Miller |
264 | 1 | |a New York [u.a.] |b Acad. Press |c 1972 | |
300 | |a X, 432 S. |b graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Pure and applied mathematics |v 50 | |
650 | 4 | |a Groupes symétriques | |
650 | 4 | |a Lie, Groupes de | |
650 | 7 | |a Mathematische fysica |2 gtt | |
650 | 4 | |a Représentations de groupes | |
650 | 7 | |a Symmetriegroepen |2 gtt | |
650 | 7 | |a Teoria Dos Grupos |2 larpcal | |
650 | 4 | |a Lie groups | |
650 | 4 | |a Representations of groups | |
650 | 4 | |a Symmetry groups | |
650 | 0 | 7 | |a Symmetrische Gruppe |0 (DE-588)4184204-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Gruppentheorie |0 (DE-588)4072157-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Raumgruppe |0 (DE-588)4177070-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Anwendung |0 (DE-588)4196864-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Symmetriegruppe |0 (DE-588)4184201-7 |2 gnd |9 rswk-swf |
655 | 7 | |8 1\p |0 (DE-588)4113937-9 |a Hochschulschrift |2 gnd-content | |
689 | 0 | 0 | |a Gruppentheorie |0 (DE-588)4072157-7 |D s |
689 | 0 | 1 | |a Anwendung |0 (DE-588)4196864-5 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Raumgruppe |0 (DE-588)4177070-5 |D s |
689 | 1 | |5 DE-604 | |
689 | 2 | 0 | |a Symmetrische Gruppe |0 (DE-588)4184204-2 |D s |
689 | 2 | |5 DE-604 | |
689 | 3 | 0 | |a Gruppentheorie |0 (DE-588)4072157-7 |D s |
689 | 3 | |5 DE-604 | |
689 | 4 | 0 | |a Symmetriegruppe |0 (DE-588)4184201-7 |D s |
689 | 4 | |5 DE-604 | |
830 | 0 | |a Pure and applied mathematics |v 50 |w (DE-604)BV010177228 |9 50 | |
999 | |a oai:aleph.bib-bvb.de:BVB01-003570101 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
980 | 4 | |a (DE-12)AK14980543 |
Datensatz im Suchindex
_version_ | 1804119900632907776 |
---|---|
any_adam_object | |
author | Miller, Willard |
author_facet | Miller, Willard |
author_role | aut |
author_sort | Miller, Willard |
author_variant | w m wm |
building | Verbundindex |
bvnumber | BV005715279 |
callnumber-first | Q - Science |
callnumber-label | QA3 |
callnumber-raw | QA3 |
callnumber-search | QA3 |
callnumber-sort | QA 13 |
callnumber-subject | QA - Mathematics |
classification_rvk | SK 260 |
ctrlnum | (OCoLC)601476463 (DE-599)BVBBV005715279 |
dewey-full | 510/.8 512/.2 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 510 - Mathematics 512 - Algebra |
dewey-raw | 510/.8 512/.2 |
dewey-search | 510/.8 512/.2 |
dewey-sort | 3510 18 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02307nam a2200661 cb4500</leader><controlfield tag="001">BV005715279</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">19970821 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">921028s1972 d||| |||| 00||| ger d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0124974600</subfield><subfield code="9">0-12-497460-0</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)601476463</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV005715279</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">ger</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-739</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-824</subfield><subfield code="a">DE-29T</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-91G</subfield><subfield code="a">DE-706</subfield><subfield code="a">DE-11</subfield><subfield code="a">DE-188</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA3</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">510/.8</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">512/.2</subfield><subfield code="2">18</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 260</subfield><subfield code="0">(DE-625)143227:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Miller, Willard</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Symmetry groups and their applications</subfield><subfield code="c">Willard Miller</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York [u.a.]</subfield><subfield code="b">Acad. Press</subfield><subfield code="c">1972</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">X, 432 S.</subfield><subfield code="b">graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Pure and applied mathematics</subfield><subfield code="v">50</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Groupes symétriques</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Lie, Groupes de</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Mathematische fysica</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Représentations de groupes</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Symmetriegroepen</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Teoria Dos Grupos</subfield><subfield code="2">larpcal</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Lie groups</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Representations of groups</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Symmetry groups</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Symmetrische Gruppe</subfield><subfield code="0">(DE-588)4184204-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Gruppentheorie</subfield><subfield code="0">(DE-588)4072157-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Raumgruppe</subfield><subfield code="0">(DE-588)4177070-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Anwendung</subfield><subfield code="0">(DE-588)4196864-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Symmetriegruppe</subfield><subfield code="0">(DE-588)4184201-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="8">1\p</subfield><subfield code="0">(DE-588)4113937-9</subfield><subfield code="a">Hochschulschrift</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Gruppentheorie</subfield><subfield code="0">(DE-588)4072157-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Anwendung</subfield><subfield code="0">(DE-588)4196864-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Raumgruppe</subfield><subfield code="0">(DE-588)4177070-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Symmetrische Gruppe</subfield><subfield code="0">(DE-588)4184204-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="3" ind2="0"><subfield code="a">Gruppentheorie</subfield><subfield code="0">(DE-588)4072157-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="3" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="4" ind2="0"><subfield code="a">Symmetriegruppe</subfield><subfield code="0">(DE-588)4184201-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="4" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Pure and applied mathematics</subfield><subfield code="v">50</subfield><subfield code="w">(DE-604)BV010177228</subfield><subfield code="9">50</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-003570101</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="980" ind1="4" ind2=" "><subfield code="a">(DE-12)AK14980543</subfield></datafield></record></collection> |
genre | 1\p (DE-588)4113937-9 Hochschulschrift gnd-content |
genre_facet | Hochschulschrift |
id | DE-604.BV005715279 |
illustrated | Illustrated |
indexdate | 2024-07-09T16:33:32Z |
institution | BVB |
isbn | 0124974600 |
language | German |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-003570101 |
oclc_num | 601476463 |
open_access_boolean | |
owner | DE-12 DE-703 DE-739 DE-355 DE-BY-UBR DE-824 DE-29T DE-20 DE-91G DE-BY-TUM DE-706 DE-11 DE-188 |
owner_facet | DE-12 DE-703 DE-739 DE-355 DE-BY-UBR DE-824 DE-29T DE-20 DE-91G DE-BY-TUM DE-706 DE-11 DE-188 |
physical | X, 432 S. graph. Darst. |
publishDate | 1972 |
publishDateSearch | 1972 |
publishDateSort | 1972 |
publisher | Acad. Press |
record_format | marc |
series | Pure and applied mathematics |
series2 | Pure and applied mathematics |
spelling | Miller, Willard Verfasser aut Symmetry groups and their applications Willard Miller New York [u.a.] Acad. Press 1972 X, 432 S. graph. Darst. txt rdacontent n rdamedia nc rdacarrier Pure and applied mathematics 50 Groupes symétriques Lie, Groupes de Mathematische fysica gtt Représentations de groupes Symmetriegroepen gtt Teoria Dos Grupos larpcal Lie groups Representations of groups Symmetry groups Symmetrische Gruppe (DE-588)4184204-2 gnd rswk-swf Gruppentheorie (DE-588)4072157-7 gnd rswk-swf Raumgruppe (DE-588)4177070-5 gnd rswk-swf Anwendung (DE-588)4196864-5 gnd rswk-swf Symmetriegruppe (DE-588)4184201-7 gnd rswk-swf 1\p (DE-588)4113937-9 Hochschulschrift gnd-content Gruppentheorie (DE-588)4072157-7 s Anwendung (DE-588)4196864-5 s DE-604 Raumgruppe (DE-588)4177070-5 s Symmetrische Gruppe (DE-588)4184204-2 s Symmetriegruppe (DE-588)4184201-7 s Pure and applied mathematics 50 (DE-604)BV010177228 50 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Miller, Willard Symmetry groups and their applications Pure and applied mathematics Groupes symétriques Lie, Groupes de Mathematische fysica gtt Représentations de groupes Symmetriegroepen gtt Teoria Dos Grupos larpcal Lie groups Representations of groups Symmetry groups Symmetrische Gruppe (DE-588)4184204-2 gnd Gruppentheorie (DE-588)4072157-7 gnd Raumgruppe (DE-588)4177070-5 gnd Anwendung (DE-588)4196864-5 gnd Symmetriegruppe (DE-588)4184201-7 gnd |
subject_GND | (DE-588)4184204-2 (DE-588)4072157-7 (DE-588)4177070-5 (DE-588)4196864-5 (DE-588)4184201-7 (DE-588)4113937-9 |
title | Symmetry groups and their applications |
title_auth | Symmetry groups and their applications |
title_exact_search | Symmetry groups and their applications |
title_full | Symmetry groups and their applications Willard Miller |
title_fullStr | Symmetry groups and their applications Willard Miller |
title_full_unstemmed | Symmetry groups and their applications Willard Miller |
title_short | Symmetry groups and their applications |
title_sort | symmetry groups and their applications |
topic | Groupes symétriques Lie, Groupes de Mathematische fysica gtt Représentations de groupes Symmetriegroepen gtt Teoria Dos Grupos larpcal Lie groups Representations of groups Symmetry groups Symmetrische Gruppe (DE-588)4184204-2 gnd Gruppentheorie (DE-588)4072157-7 gnd Raumgruppe (DE-588)4177070-5 gnd Anwendung (DE-588)4196864-5 gnd Symmetriegruppe (DE-588)4184201-7 gnd |
topic_facet | Groupes symétriques Lie, Groupes de Mathematische fysica Représentations de groupes Symmetriegroepen Teoria Dos Grupos Lie groups Representations of groups Symmetry groups Symmetrische Gruppe Gruppentheorie Raumgruppe Anwendung Symmetriegruppe Hochschulschrift |
volume_link | (DE-604)BV010177228 |
work_keys_str_mv | AT millerwillard symmetrygroupsandtheirapplications |