Einführung in die Axiomatik der Algebra:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | German |
Veröffentlicht: |
Berlin [u.a.]
de Gruyter
1926
|
Schriftenreihe: | Göschens Lehrbücherei / 1
6. |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | X, 197 S. |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV005674945 | ||
003 | DE-604 | ||
005 | 20160418 | ||
007 | t | ||
008 | 921028s1926 |||| 00||| ger d | ||
035 | |a (OCoLC)15269233 | ||
035 | |a (DE-599)BVBBV005674945 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a ger | |
049 | |a DE-703 |a DE-739 |a DE-355 |a DE-12 |a DE-20 |a DE-824 |a DE-91 |a DE-91G |a DE-19 |a DE-29T |a DE-83 |a DE-11 |a DE-188 | ||
050 | 0 | |a QA155 | |
082 | 0 | |a 512 | |
084 | |a SK 200 |0 (DE-625)143223: |2 rvk | ||
084 | |a 15-01 |2 msc | ||
100 | 1 | |a Beck, Hans |e Verfasser |4 aut | |
245 | 1 | 0 | |a Einführung in die Axiomatik der Algebra |c von H. Beck |
264 | 1 | |a Berlin [u.a.] |b de Gruyter |c 1926 | |
300 | |a X, 197 S. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Göschens Lehrbücherei / 1 |v 6. | |
650 | 4 | |a Algebra | |
650 | 0 | 7 | |a Axiomatik |0 (DE-588)4004038-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Algebra |0 (DE-588)4001156-2 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Axiomatik |0 (DE-588)4004038-0 |D s |
689 | 0 | 1 | |a Algebra |0 (DE-588)4001156-2 |D s |
689 | 0 | |5 DE-604 | |
810 | 2 | |a 1 |t Göschens Lehrbücherei |v 6. |w (DE-604)BV001896116 |9 6 | |
856 | 4 | 2 | |m HBZ Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=003545947&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
940 | 1 | |q BSBQK0013 | |
999 | |a oai:aleph.bib-bvb.de:BVB01-003545947 | ||
980 | 4 | |a (DE-12)AK40622123 |
Datensatz im Suchindex
_version_ | 1804119866738737152 |
---|---|
adam_text | Inhaltsverzeichnis.
Kapitel I. Zahlen und Verknüpfungen. Seite
§ 1. Algebra 1
§ 2. Aufgabestellung 1
§ 3. Gleichheit 2
§ 4. Die Aliordnungsaxiome 4
§ 5. Die Additionsaxiome 6
§ 6. Das Subtraktionsaxiom 6
§ 7. Die Multiplikationsaxiome 8
§ 8. Das Axiom der Division 10
§ 9. Die Axiome der natürlichen Zahlen 11
§ 10. Die Assoziationsgesetze 12
§ 11. Zur Potenzlehre 14
Kapitel II. Pnnktmengen.
§ 12. Mengen 15
§13. Teilmengen 16
§14. Addition 17
§ 15. Multiplikation 19
§ 16. Subtraktion 21
§17. Division 22
Kapitel III. Zahlenpaare.
§ 18. Addition und Subtraktion 23
§19. Hamütonsche Paare 24
§20. Der Gleichungssatz 26
§21. Division 26
§22. Multiplikation eines Paares mit einer Zahl 26
§23. Kanonische Darstellung 27
§24. Nochmals der Gleichungssatz 28
§25. Duale Zahlen 29
Kapitel IV. Matrizes.
§26. Einleitung 31
§ 27. Begriff der Matrix 31
§28. Addition und Subtraktion 32
§29. Multiplikation 33
§ 30. Skalare Matrizes 35
§31. Einheitsmatrix 37
§32. Zerlegung 37
VIII Inhaltsverzeichnis.
Seite
§ 33. Der Gleichungssatz 38
§ 34. Einreihige Matrizes 39
§ 35. Division 39
§ 36. Die Gleichung X2 = E 40
Kapitel V. Vektoren.
§ 37. Addition und Subtraktion 41
§ 38. Numerische Multiplikation 42
§ 39. Skalare Multiplikation 43
§ 40. Vektorielle Multiplikation 43 .,
§ 41. Quatemionen 44
§ 42. Skalare und dreidimensionale Vektoren 46
§ 43. Tensorielle Multiplikation 46
Kapitel VI. Lineare Gleichungen.
§ 44. System linearer Gleichungen 48
§ 46. Äquivalente Systeme 60
§ 46. Elementarumformungen 52
§ 47. Äquivalenz der Matrizes 64
§ 48. Herstellung der kanonischen Gestalt einer nicht singulären Matrix .... 55
§ 49. lineare Substitution kontravarianter Vektoren 57
§ 50. Erweiterung des Äquivalenzbegriffes für Matrizes 60
§ 51. Normalfonnen singulärer Matrizes 63
§ 52. Anzahl der Lösungen eines Systems linearer homogener Gleichungen ... 65
§ 53. Anzahl der Lösungen eines Systems inhomogener linearer Gleichungen . . 66
§ 54. Rechteckige Matrizes. 67
§ 55. Nochmalige Erweiterung des Äquivalenzbegriffs für Matrizes 68
§ 56. Lösbarkeit eines inhomogenen Systems linearer Gleichungen 71
Kapitel VII. Lineare Yektorgebilde.
§ 57. Lineare Abhängigkeit von Vektoren 74
§ 58. Lineare Vektorgebüde 76
§ 59. Das Sylvestersche NuUitätsgesetz 81
§ 60. Durchschnitt zweier linearen Vektorgebüde 83
§ 61. Verbindungsgebilde zweier linearen Vektorgebüde 84
§ 62. Lineare Vektortransformationen 85
§ 63. Konjugierte Matrizes 86
§ 64. Kontravariante und kovariante Vektoren 87
§ 66. Lineare Transformation kovarianter Vektoren 89
§ 66. Duale Vektortransformationen 91
§ 67. Zusammenfassung 92
Kapitel VIII. Bilineare und quadratische Formen.
§ 68. Bilineare Formen 94
§ 69. Engere Äquivalenzbegriffe 95
§ 70. Bilinearformen zweiter Art und lineare Transformationen 97
| 71. Singuläre lineare Transformationen 99
§ 72. Büineare Formen erster Art 100
§ 73. Der Rang einer schiefsymmetrischen Matrix , 101
§ 74. Kovalente Umgestaltung einer symmetrischen Matrix 102
§ 75. Bilinearformen erster Art und duale Vektortransformationen 103
Inhaltsverzeichnis. IX
Seite
§ 76. Quadratische Formen 105
§ 77. Nochmals die Reduktion einer quadratischen Form 108
§ 78. Zusammenfassung 109
Kapitel IX. Proportionalität der Matrizes.
§ 79. Vektoren und Punkte 111
§ 80. KoUineationen 112
§ 81. Schnittraum und Verbindungsraum 115
§ 82. Proportionale kovariante Vektoren 117
§ 83. Korrelationen 118
§ 84. Quadratische Punktgebilde 119
§ 86. Teilräume 120
§ 86. Erzeugende Räume auf einer Quadrik 121
§ 87. Die M*_j im E„ 123
§ 88. Reell proportionale Matrizes 124
Kapitel X. Determinanten.
§ 89. Vorbereitung 127
§ 90. Problemstellung 128
§ 91. Univalenz der Matrizes 130
§ 92. Univalente Umgestaltung der Matrizes 131
§ 93. Cramersche Regel 132
§ 94. Struktur der Determinante 133
§ 95. Determinante des Produktes zweier Matrizes 134
§ 96. Entwicklung einer Determinante nach einem Vektor 137
§ 97. Berechnung der reziproken Matrix A 1 139
§ 98. Die adjungierte Matrix 140
§ 99. Matrixrang und Teüdeterminanten 141
§100. Auftreten der Adjungierten bei den quadratischen Formen 143
§ 101. Algebraische Komplemente für symmetrische und schiefsymmetrische Matrizes 143
§ 102. Die Laplacesche Entwicklung 144
§ 103. Rändern einer Determinante 146
§104. Die schiefsymmetrischen Determinanten 147
§ 105. Nochmals die algebraischen Komplemente einer schiefsymmetrischen Deter¬
minante 150
§ 106. Auflösung eines Systems linearer Gleichungen von singulärer Matrix . . . 161
§ 107. Die Division der Matrizes 152
§ 108. Weitere Ausblicke 154
§109. Tensoren 156
§ 110. Lineare Vektortransformationen 157
§ 111. Formale Differentiation 159
§112. Verjüngung eines gemischten Tensors 160
§ 113. Nicht gemischte Tensoren 162
§ 114. Multiplikation der Tensoren 163
Kapitel XI. Unabhängigkeit und Wtderspruchslosigkeit.
§115. Gruppenaxiome 165
§116. Gruppenfcätze 167
§ 117. Satz von Fermat 169
§118. Widerspruchslosigkeit der Gruppenaxiome 1™
X Inhaltsverzeichnis.
Seite
§ 119. Unabhängigkeit der Gruppenaxiome 171
§120. Körper 172
§121. Körpersätze 172
§ 122. Beispiele eines Körpers 174
§ 123. Unabhängigkeit der zehn Axiome 175
§ 124. Widerspruchslosigkeit der Verknüpfungsaxiome 177
Kapitel XII. Der genetische Aufbau der Algebra.
§ 125. Die Peanoschen Axiome 179
§126. Addition 180
§127. Multiplikation 181
§ 128. Unabhängigkeit der Peanoschen Axiome 182
§ 129. Die ganzen Zahlen 183
§130. Addition 184
§131. Subtraktion 186
§132. Multiplikation 188
§ 133. Unabhängigkeit vom Material 190
§ 134. Skizzierung des weiteren genetischen Aufbaues 192
|
any_adam_object | 1 |
author | Beck, Hans |
author_facet | Beck, Hans |
author_role | aut |
author_sort | Beck, Hans |
author_variant | h b hb |
building | Verbundindex |
bvnumber | BV005674945 |
callnumber-first | Q - Science |
callnumber-label | QA155 |
callnumber-raw | QA155 |
callnumber-search | QA155 |
callnumber-sort | QA 3155 |
callnumber-subject | QA - Mathematics |
classification_rvk | SK 200 |
ctrlnum | (OCoLC)15269233 (DE-599)BVBBV005674945 |
dewey-full | 512 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 512 - Algebra |
dewey-raw | 512 |
dewey-search | 512 |
dewey-sort | 3512 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01533nam a2200421 cb4500</leader><controlfield tag="001">BV005674945</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20160418 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">921028s1926 |||| 00||| ger d</controlfield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)15269233</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV005674945</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">ger</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-703</subfield><subfield code="a">DE-739</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-12</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-824</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-91G</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-29T</subfield><subfield code="a">DE-83</subfield><subfield code="a">DE-11</subfield><subfield code="a">DE-188</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA155</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">512</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 200</subfield><subfield code="0">(DE-625)143223:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">15-01</subfield><subfield code="2">msc</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Beck, Hans</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Einführung in die Axiomatik der Algebra</subfield><subfield code="c">von H. Beck</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin [u.a.]</subfield><subfield code="b">de Gruyter</subfield><subfield code="c">1926</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">X, 197 S.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Göschens Lehrbücherei / 1</subfield><subfield code="v">6.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Algebra</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Axiomatik</subfield><subfield code="0">(DE-588)4004038-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Algebra</subfield><subfield code="0">(DE-588)4001156-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Axiomatik</subfield><subfield code="0">(DE-588)4004038-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Algebra</subfield><subfield code="0">(DE-588)4001156-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="810" ind1="2" ind2=" "><subfield code="a">1</subfield><subfield code="t">Göschens Lehrbücherei</subfield><subfield code="v">6.</subfield><subfield code="w">(DE-604)BV001896116</subfield><subfield code="9">6</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HBZ Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=003545947&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">BSBQK0013</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-003545947</subfield></datafield><datafield tag="980" ind1="4" ind2=" "><subfield code="a">(DE-12)AK40622123</subfield></datafield></record></collection> |
id | DE-604.BV005674945 |
illustrated | Not Illustrated |
indexdate | 2024-07-09T16:33:00Z |
institution | BVB |
language | German |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-003545947 |
oclc_num | 15269233 |
open_access_boolean | |
owner | DE-703 DE-739 DE-355 DE-BY-UBR DE-12 DE-20 DE-824 DE-91 DE-BY-TUM DE-91G DE-BY-TUM DE-19 DE-BY-UBM DE-29T DE-83 DE-11 DE-188 |
owner_facet | DE-703 DE-739 DE-355 DE-BY-UBR DE-12 DE-20 DE-824 DE-91 DE-BY-TUM DE-91G DE-BY-TUM DE-19 DE-BY-UBM DE-29T DE-83 DE-11 DE-188 |
physical | X, 197 S. |
psigel | BSBQK0013 |
publishDate | 1926 |
publishDateSearch | 1926 |
publishDateSort | 1926 |
publisher | de Gruyter |
record_format | marc |
series2 | Göschens Lehrbücherei / 1 |
spelling | Beck, Hans Verfasser aut Einführung in die Axiomatik der Algebra von H. Beck Berlin [u.a.] de Gruyter 1926 X, 197 S. txt rdacontent n rdamedia nc rdacarrier Göschens Lehrbücherei / 1 6. Algebra Axiomatik (DE-588)4004038-0 gnd rswk-swf Algebra (DE-588)4001156-2 gnd rswk-swf Axiomatik (DE-588)4004038-0 s Algebra (DE-588)4001156-2 s DE-604 1 Göschens Lehrbücherei 6. (DE-604)BV001896116 6 HBZ Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=003545947&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Beck, Hans Einführung in die Axiomatik der Algebra Algebra Axiomatik (DE-588)4004038-0 gnd Algebra (DE-588)4001156-2 gnd |
subject_GND | (DE-588)4004038-0 (DE-588)4001156-2 |
title | Einführung in die Axiomatik der Algebra |
title_auth | Einführung in die Axiomatik der Algebra |
title_exact_search | Einführung in die Axiomatik der Algebra |
title_full | Einführung in die Axiomatik der Algebra von H. Beck |
title_fullStr | Einführung in die Axiomatik der Algebra von H. Beck |
title_full_unstemmed | Einführung in die Axiomatik der Algebra von H. Beck |
title_short | Einführung in die Axiomatik der Algebra |
title_sort | einfuhrung in die axiomatik der algebra |
topic | Algebra Axiomatik (DE-588)4004038-0 gnd Algebra (DE-588)4001156-2 gnd |
topic_facet | Algebra Axiomatik |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=003545947&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
volume_link | (DE-604)BV001896116 |
work_keys_str_mv | AT beckhans einfuhrungindieaxiomatikderalgebra |