Infinite dimensional Lie superalgebras:
Gespeichert in:
Format: | Buch |
---|---|
Sprache: | English |
Veröffentlicht: |
Berlin [u.a.]
<<de>> Gruyter
1992
|
Schriftenreihe: | De Gruyter expositions in mathematics
7 |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | X, 250 S. graph. Darst. |
ISBN: | 3110129744 |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV005581026 | ||
003 | DE-604 | ||
005 | 20090723 | ||
007 | t | ||
008 | 920907s1992 gw d||| |||| 00||| eng d | ||
020 | |a 3110129744 |9 3-11-012974-4 | ||
035 | |a (OCoLC)246790288 | ||
035 | |a (DE-599)BVBBV005581026 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
044 | |a gw |c DE | ||
049 | |a DE-384 |a DE-91G |a DE-739 |a DE-703 |a DE-824 |a DE-12 |a DE-29T |a DE-19 |a DE-634 |a DE-11 |a DE-188 | ||
084 | |a SK 260 |0 (DE-625)143227: |2 rvk | ||
084 | |a SK 340 |0 (DE-625)143232: |2 rvk | ||
084 | |a MAT 173f |2 stub | ||
084 | |a MAT 583f |2 stub | ||
245 | 1 | 0 | |a Infinite dimensional Lie superalgebras |c by Yuri A. Bahturin ... |
264 | 1 | |a Berlin [u.a.] |b <<de>> Gruyter |c 1992 | |
300 | |a X, 250 S. |b graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a De Gruyter expositions in mathematics |v 7 | |
650 | 4 | |a Lie-Superalgebra | |
650 | 0 | 7 | |a Lie-Algebra |0 (DE-588)4130355-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Lie-Superalgebra |0 (DE-588)4304027-5 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Lie-Superalgebra |0 (DE-588)4304027-5 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Lie-Algebra |0 (DE-588)4130355-6 |D s |
689 | 1 | |5 DE-604 | |
700 | 1 | |a Bachturin, Jurij A. |d 1946- |e Sonstige |0 (DE-588)121656136 |4 oth | |
830 | 0 | |a De Gruyter expositions in mathematics |v 7 |w (DE-604)BV004069300 |9 7 | |
856 | 4 | 2 | |m HBZ Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=003494778&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
940 | 1 | |n oe | |
999 | |a oai:aleph.bib-bvb.de:BVB01-003494778 |
Datensatz im Suchindex
_version_ | 1804119792619094016 |
---|---|
adam_text | Table of Contents
Preface vii
List of Symbols ix
Chapter 1
Basic facts about Lie superalgebras
§0. Some background 1
§ 1. Graded algebras 4
§ 2. Identical relations of graded algebras 22
Exercises 35
Comments to Chapter 1 37
Chapter 2
The structure of free Lie superalgebras
§ 1. The free colour Lie superalgebra, s regular words and
monomials 39
§ 2. Bases of free colour Lie superalgebras 44
§ 3. The freeness of subalgebras and its corollaries 53
§ 4. Bases and subalgebras of free colour Lie p superalgebras 69
§ 5. The lattice of finitely generated subalgebras 75
§ 6. Free colour Lie super rings 78
Comments to Chapter 2 80
Chapter 3
Composition techniques in the theory of Lie superalgebras
§1. The Diamond Lemma for associative rings 81
§ 2. Universal enveloping algebras 84
§ 3. The Composition Lemma 95
§4. Free products with amalgamated subalgebra 105
Comments to Chapter 3 108
vi Table of Contents
Chapter 4
Identities in enveloping algebras
§ 1. Main results 111
§2. Delta sets 123
§ 3. Identities in enveloping algebras of nilpotent Lie superalgebras 129
§4. The case of characteristic zero 136
Comments to Chapter 4 144
Chapter 5
Irreducible representations of Lie superalgebras
§ 1. The Jacobson radical of universal enveloping algebras 147
§2. Dimensions of irreducible representations 152
§ 3. More on restricted enveloping algebras 160
§4. Examples 171
Comments to Chapter 5 173
Chapter 6
Finiteness conditions for colour Lie superalgebras
with identities
§1. Various types of finiteness conditions. Examples 175
§2. Maximal condition and Hopf property 180
§3. Sufficient conditions for residual finiteness 201
§4. Representability of Lie superalgebras by matrices 210
Comments to Chapter 6 236
Bibliography 237
Author Index 247
Subject Index 249
|
any_adam_object | 1 |
author_GND | (DE-588)121656136 |
building | Verbundindex |
bvnumber | BV005581026 |
classification_rvk | SK 260 SK 340 |
classification_tum | MAT 173f MAT 583f |
ctrlnum | (OCoLC)246790288 (DE-599)BVBBV005581026 |
discipline | Mathematik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01719nam a2200445 cb4500</leader><controlfield tag="001">BV005581026</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20090723 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">920907s1992 gw d||| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3110129744</subfield><subfield code="9">3-11-012974-4</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)246790288</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV005581026</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">DE</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-91G</subfield><subfield code="a">DE-739</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-824</subfield><subfield code="a">DE-12</subfield><subfield code="a">DE-29T</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-634</subfield><subfield code="a">DE-11</subfield><subfield code="a">DE-188</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 260</subfield><subfield code="0">(DE-625)143227:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 340</subfield><subfield code="0">(DE-625)143232:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 173f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 583f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Infinite dimensional Lie superalgebras</subfield><subfield code="c">by Yuri A. Bahturin ...</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin [u.a.]</subfield><subfield code="b"><<de>> Gruyter</subfield><subfield code="c">1992</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">X, 250 S.</subfield><subfield code="b">graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">De Gruyter expositions in mathematics</subfield><subfield code="v">7</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Lie-Superalgebra</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Lie-Algebra</subfield><subfield code="0">(DE-588)4130355-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Lie-Superalgebra</subfield><subfield code="0">(DE-588)4304027-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Lie-Superalgebra</subfield><subfield code="0">(DE-588)4304027-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Lie-Algebra</subfield><subfield code="0">(DE-588)4130355-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Bachturin, Jurij A.</subfield><subfield code="d">1946-</subfield><subfield code="e">Sonstige</subfield><subfield code="0">(DE-588)121656136</subfield><subfield code="4">oth</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">De Gruyter expositions in mathematics</subfield><subfield code="v">7</subfield><subfield code="w">(DE-604)BV004069300</subfield><subfield code="9">7</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HBZ Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=003494778&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="n">oe</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-003494778</subfield></datafield></record></collection> |
id | DE-604.BV005581026 |
illustrated | Illustrated |
indexdate | 2024-07-09T16:31:49Z |
institution | BVB |
isbn | 3110129744 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-003494778 |
oclc_num | 246790288 |
open_access_boolean | |
owner | DE-384 DE-91G DE-BY-TUM DE-739 DE-703 DE-824 DE-12 DE-29T DE-19 DE-BY-UBM DE-634 DE-11 DE-188 |
owner_facet | DE-384 DE-91G DE-BY-TUM DE-739 DE-703 DE-824 DE-12 DE-29T DE-19 DE-BY-UBM DE-634 DE-11 DE-188 |
physical | X, 250 S. graph. Darst. |
publishDate | 1992 |
publishDateSearch | 1992 |
publishDateSort | 1992 |
publisher | <<de>> Gruyter |
record_format | marc |
series | De Gruyter expositions in mathematics |
series2 | De Gruyter expositions in mathematics |
spelling | Infinite dimensional Lie superalgebras by Yuri A. Bahturin ... Berlin [u.a.] <<de>> Gruyter 1992 X, 250 S. graph. Darst. txt rdacontent n rdamedia nc rdacarrier De Gruyter expositions in mathematics 7 Lie-Superalgebra Lie-Algebra (DE-588)4130355-6 gnd rswk-swf Lie-Superalgebra (DE-588)4304027-5 gnd rswk-swf Lie-Superalgebra (DE-588)4304027-5 s DE-604 Lie-Algebra (DE-588)4130355-6 s Bachturin, Jurij A. 1946- Sonstige (DE-588)121656136 oth De Gruyter expositions in mathematics 7 (DE-604)BV004069300 7 HBZ Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=003494778&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Infinite dimensional Lie superalgebras De Gruyter expositions in mathematics Lie-Superalgebra Lie-Algebra (DE-588)4130355-6 gnd Lie-Superalgebra (DE-588)4304027-5 gnd |
subject_GND | (DE-588)4130355-6 (DE-588)4304027-5 |
title | Infinite dimensional Lie superalgebras |
title_auth | Infinite dimensional Lie superalgebras |
title_exact_search | Infinite dimensional Lie superalgebras |
title_full | Infinite dimensional Lie superalgebras by Yuri A. Bahturin ... |
title_fullStr | Infinite dimensional Lie superalgebras by Yuri A. Bahturin ... |
title_full_unstemmed | Infinite dimensional Lie superalgebras by Yuri A. Bahturin ... |
title_short | Infinite dimensional Lie superalgebras |
title_sort | infinite dimensional lie superalgebras |
topic | Lie-Superalgebra Lie-Algebra (DE-588)4130355-6 gnd Lie-Superalgebra (DE-588)4304027-5 gnd |
topic_facet | Lie-Superalgebra Lie-Algebra |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=003494778&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
volume_link | (DE-604)BV004069300 |
work_keys_str_mv | AT bachturinjurija infinitedimensionalliesuperalgebras |