The Langlands classification and irreducible characters for real reductive groups:
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Boston u.a.
Birkhäuser
1992
|
Schriftenreihe: | Progress in mathematics
104 |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | XII, 318 S. |
ISBN: | 081763634X 376433634X |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV005429338 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | t | ||
008 | 920707s1992 |||| 00||| eng d | ||
020 | |a 081763634X |9 0-8176-3634-X | ||
020 | |a 376433634X |9 3-7643-3634-X | ||
035 | |a (OCoLC)25200327 | ||
035 | |a (DE-599)BVBBV005429338 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-12 |a DE-355 |a DE-739 |a DE-91G |a DE-703 |a DE-824 |a DE-29T |a DE-634 |a DE-11 |a DE-188 | ||
050 | 0 | |a QA176 | |
082 | 0 | |a 512/.2 |2 20 | |
084 | |a SK 240 |0 (DE-625)143226: |2 rvk | ||
084 | |a SK 260 |0 (DE-625)143227: |2 rvk | ||
084 | |a MAT 204f |2 stub | ||
100 | 1 | |a Adams, Jeffrey |e Verfasser |4 aut | |
245 | 1 | 0 | |a The Langlands classification and irreducible characters for real reductive groups |c Jeffrey Adams ; Dan Barbasch ; David A. Vogan, Jr. |
264 | 1 | |a Boston u.a. |b Birkhäuser |c 1992 | |
300 | |a XII, 318 S. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Progress in mathematics |v 104 | |
650 | 4 | |a Géométrie algébrique | |
650 | 7 | |a Géométrie algébrique |2 ram | |
650 | 4 | |a Représentations de groupes | |
650 | 7 | |a Représentations de groupes |2 ram | |
650 | 4 | |a Geometry, Algebraic | |
650 | 4 | |a Representations of groups | |
650 | 0 | 7 | |a Lokale Langlands-Vermutung |0 (DE-588)4211641-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Darstellungstheorie |0 (DE-588)4148816-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Irreduzible Darstellung |0 (DE-588)4162430-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Reduktive Gruppe |0 (DE-588)4177313-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Unitäre Darstellung |0 (DE-588)4186906-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Langlands-Klassifizierung |0 (DE-588)4211640-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Algebraische Geometrie |0 (DE-588)4001161-6 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Langlands-Klassifizierung |0 (DE-588)4211640-5 |D s |
689 | 0 | 1 | |a Reduktive Gruppe |0 (DE-588)4177313-5 |D s |
689 | 0 | 2 | |a Unitäre Darstellung |0 (DE-588)4186906-0 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Reduktive Gruppe |0 (DE-588)4177313-5 |D s |
689 | 1 | 1 | |a Irreduzible Darstellung |0 (DE-588)4162430-0 |D s |
689 | 1 | 2 | |a Langlands-Klassifizierung |0 (DE-588)4211640-5 |D s |
689 | 1 | |5 DE-604 | |
689 | 2 | 0 | |a Algebraische Geometrie |0 (DE-588)4001161-6 |D s |
689 | 2 | |5 DE-604 | |
689 | 3 | 0 | |a Darstellungstheorie |0 (DE-588)4148816-7 |D s |
689 | 3 | |5 DE-604 | |
689 | 4 | 0 | |a Lokale Langlands-Vermutung |0 (DE-588)4211641-7 |D s |
689 | 4 | 1 | |a Reduktive Gruppe |0 (DE-588)4177313-5 |D s |
689 | 4 | |5 DE-604 | |
689 | 5 | 0 | |a Langlands-Klassifizierung |0 (DE-588)4211640-5 |D s |
689 | 5 | |5 DE-604 | |
700 | 1 | |a Barbasch, Dan |e Verfasser |4 aut | |
700 | 1 | |a Vogan, David A. |e Verfasser |4 aut | |
830 | 0 | |a Progress in mathematics |v 104 |w (DE-604)BV000004120 |9 104 | |
856 | 4 | 2 | |m HBZ Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=003394508&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-003394508 |
Datensatz im Suchindex
_version_ | 1804119636661239808 |
---|---|
adam_text | Contents
Acknowledgments vii
Index of notation ix
1. Introduction . . . .^ 1
2. Structure theory: real forms 28
3. Structure theory: extended groups and Whittaker models ... 41
4. Structure theory: L groups 47
5. Langlands parameters and L homomorphisms 55
6. Geometric parameters 64
7. Complete geometric parameters and perverse sheaves 82
8. Perverse sheaves on the geometric parameter space 98
9. The Langlands classification for tori 105
10. Covering groups and projective representations 113
11. The Langlands classification without L groups 120
12. Langlands parameters and Cartan subgroups 139
13. Pairings between Cartan subgroups and the proof
of Theorem 10.4 147
14. Proof of Propositions 13.6 and 13.8 157
15. Multiplicity formulas for representations 167
16. The translation principle, the Kazhdan Lusztig algorithm,
and Theorem 1.24 175
17. Proof of Theorems 16.22 and 16.24 189
18. Strongly stable characters and Theorem 1.29 205
19. Characteristic cycles, micro packets, and Corollary 1.32 . . 212
20. Characteristic cycles and Harish Chandra modules 222
21. The classification theorem and Harish Chandra modules
for the dual group 234
22. Arthur parameters 239
23. Local geometry of constructible sheaves 248
24. Microlocal geometry of perverse sheaves 252
25. A fixed point formula 266
26. Endoscopic lifting 275
27. Special unipotent representations 295
References 311
Index 315
|
any_adam_object | 1 |
author | Adams, Jeffrey Barbasch, Dan Vogan, David A. |
author_facet | Adams, Jeffrey Barbasch, Dan Vogan, David A. |
author_role | aut aut aut |
author_sort | Adams, Jeffrey |
author_variant | j a ja d b db d a v da dav |
building | Verbundindex |
bvnumber | BV005429338 |
callnumber-first | Q - Science |
callnumber-label | QA176 |
callnumber-raw | QA176 |
callnumber-search | QA176 |
callnumber-sort | QA 3176 |
callnumber-subject | QA - Mathematics |
classification_rvk | SK 240 SK 260 |
classification_tum | MAT 204f |
ctrlnum | (OCoLC)25200327 (DE-599)BVBBV005429338 |
dewey-full | 512/.2 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 512 - Algebra |
dewey-raw | 512/.2 |
dewey-search | 512/.2 |
dewey-sort | 3512 12 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03086nam a2200745 cb4500</leader><controlfield tag="001">BV005429338</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">920707s1992 |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">081763634X</subfield><subfield code="9">0-8176-3634-X</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">376433634X</subfield><subfield code="9">3-7643-3634-X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)25200327</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV005429338</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-12</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-739</subfield><subfield code="a">DE-91G</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-824</subfield><subfield code="a">DE-29T</subfield><subfield code="a">DE-634</subfield><subfield code="a">DE-11</subfield><subfield code="a">DE-188</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA176</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">512/.2</subfield><subfield code="2">20</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 240</subfield><subfield code="0">(DE-625)143226:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 260</subfield><subfield code="0">(DE-625)143227:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 204f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Adams, Jeffrey</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">The Langlands classification and irreducible characters for real reductive groups</subfield><subfield code="c">Jeffrey Adams ; Dan Barbasch ; David A. Vogan, Jr.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Boston u.a.</subfield><subfield code="b">Birkhäuser</subfield><subfield code="c">1992</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XII, 318 S.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Progress in mathematics</subfield><subfield code="v">104</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Géométrie algébrique</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Géométrie algébrique</subfield><subfield code="2">ram</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Représentations de groupes</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Représentations de groupes</subfield><subfield code="2">ram</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Geometry, Algebraic</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Representations of groups</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Lokale Langlands-Vermutung</subfield><subfield code="0">(DE-588)4211641-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Darstellungstheorie</subfield><subfield code="0">(DE-588)4148816-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Irreduzible Darstellung</subfield><subfield code="0">(DE-588)4162430-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Reduktive Gruppe</subfield><subfield code="0">(DE-588)4177313-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Unitäre Darstellung</subfield><subfield code="0">(DE-588)4186906-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Langlands-Klassifizierung</subfield><subfield code="0">(DE-588)4211640-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Algebraische Geometrie</subfield><subfield code="0">(DE-588)4001161-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Langlands-Klassifizierung</subfield><subfield code="0">(DE-588)4211640-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Reduktive Gruppe</subfield><subfield code="0">(DE-588)4177313-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Unitäre Darstellung</subfield><subfield code="0">(DE-588)4186906-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Reduktive Gruppe</subfield><subfield code="0">(DE-588)4177313-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Irreduzible Darstellung</subfield><subfield code="0">(DE-588)4162430-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="2"><subfield code="a">Langlands-Klassifizierung</subfield><subfield code="0">(DE-588)4211640-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Algebraische Geometrie</subfield><subfield code="0">(DE-588)4001161-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="3" ind2="0"><subfield code="a">Darstellungstheorie</subfield><subfield code="0">(DE-588)4148816-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="3" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="4" ind2="0"><subfield code="a">Lokale Langlands-Vermutung</subfield><subfield code="0">(DE-588)4211641-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="4" ind2="1"><subfield code="a">Reduktive Gruppe</subfield><subfield code="0">(DE-588)4177313-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="4" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="5" ind2="0"><subfield code="a">Langlands-Klassifizierung</subfield><subfield code="0">(DE-588)4211640-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="5" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Barbasch, Dan</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Vogan, David A.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Progress in mathematics</subfield><subfield code="v">104</subfield><subfield code="w">(DE-604)BV000004120</subfield><subfield code="9">104</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HBZ Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=003394508&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-003394508</subfield></datafield></record></collection> |
id | DE-604.BV005429338 |
illustrated | Not Illustrated |
indexdate | 2024-07-09T16:29:21Z |
institution | BVB |
isbn | 081763634X 376433634X |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-003394508 |
oclc_num | 25200327 |
open_access_boolean | |
owner | DE-384 DE-12 DE-355 DE-BY-UBR DE-739 DE-91G DE-BY-TUM DE-703 DE-824 DE-29T DE-634 DE-11 DE-188 |
owner_facet | DE-384 DE-12 DE-355 DE-BY-UBR DE-739 DE-91G DE-BY-TUM DE-703 DE-824 DE-29T DE-634 DE-11 DE-188 |
physical | XII, 318 S. |
publishDate | 1992 |
publishDateSearch | 1992 |
publishDateSort | 1992 |
publisher | Birkhäuser |
record_format | marc |
series | Progress in mathematics |
series2 | Progress in mathematics |
spelling | Adams, Jeffrey Verfasser aut The Langlands classification and irreducible characters for real reductive groups Jeffrey Adams ; Dan Barbasch ; David A. Vogan, Jr. Boston u.a. Birkhäuser 1992 XII, 318 S. txt rdacontent n rdamedia nc rdacarrier Progress in mathematics 104 Géométrie algébrique Géométrie algébrique ram Représentations de groupes Représentations de groupes ram Geometry, Algebraic Representations of groups Lokale Langlands-Vermutung (DE-588)4211641-7 gnd rswk-swf Darstellungstheorie (DE-588)4148816-7 gnd rswk-swf Irreduzible Darstellung (DE-588)4162430-0 gnd rswk-swf Reduktive Gruppe (DE-588)4177313-5 gnd rswk-swf Unitäre Darstellung (DE-588)4186906-0 gnd rswk-swf Langlands-Klassifizierung (DE-588)4211640-5 gnd rswk-swf Algebraische Geometrie (DE-588)4001161-6 gnd rswk-swf Langlands-Klassifizierung (DE-588)4211640-5 s Reduktive Gruppe (DE-588)4177313-5 s Unitäre Darstellung (DE-588)4186906-0 s DE-604 Irreduzible Darstellung (DE-588)4162430-0 s Algebraische Geometrie (DE-588)4001161-6 s Darstellungstheorie (DE-588)4148816-7 s Lokale Langlands-Vermutung (DE-588)4211641-7 s Barbasch, Dan Verfasser aut Vogan, David A. Verfasser aut Progress in mathematics 104 (DE-604)BV000004120 104 HBZ Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=003394508&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Adams, Jeffrey Barbasch, Dan Vogan, David A. The Langlands classification and irreducible characters for real reductive groups Progress in mathematics Géométrie algébrique Géométrie algébrique ram Représentations de groupes Représentations de groupes ram Geometry, Algebraic Representations of groups Lokale Langlands-Vermutung (DE-588)4211641-7 gnd Darstellungstheorie (DE-588)4148816-7 gnd Irreduzible Darstellung (DE-588)4162430-0 gnd Reduktive Gruppe (DE-588)4177313-5 gnd Unitäre Darstellung (DE-588)4186906-0 gnd Langlands-Klassifizierung (DE-588)4211640-5 gnd Algebraische Geometrie (DE-588)4001161-6 gnd |
subject_GND | (DE-588)4211641-7 (DE-588)4148816-7 (DE-588)4162430-0 (DE-588)4177313-5 (DE-588)4186906-0 (DE-588)4211640-5 (DE-588)4001161-6 |
title | The Langlands classification and irreducible characters for real reductive groups |
title_auth | The Langlands classification and irreducible characters for real reductive groups |
title_exact_search | The Langlands classification and irreducible characters for real reductive groups |
title_full | The Langlands classification and irreducible characters for real reductive groups Jeffrey Adams ; Dan Barbasch ; David A. Vogan, Jr. |
title_fullStr | The Langlands classification and irreducible characters for real reductive groups Jeffrey Adams ; Dan Barbasch ; David A. Vogan, Jr. |
title_full_unstemmed | The Langlands classification and irreducible characters for real reductive groups Jeffrey Adams ; Dan Barbasch ; David A. Vogan, Jr. |
title_short | The Langlands classification and irreducible characters for real reductive groups |
title_sort | the langlands classification and irreducible characters for real reductive groups |
topic | Géométrie algébrique Géométrie algébrique ram Représentations de groupes Représentations de groupes ram Geometry, Algebraic Representations of groups Lokale Langlands-Vermutung (DE-588)4211641-7 gnd Darstellungstheorie (DE-588)4148816-7 gnd Irreduzible Darstellung (DE-588)4162430-0 gnd Reduktive Gruppe (DE-588)4177313-5 gnd Unitäre Darstellung (DE-588)4186906-0 gnd Langlands-Klassifizierung (DE-588)4211640-5 gnd Algebraische Geometrie (DE-588)4001161-6 gnd |
topic_facet | Géométrie algébrique Représentations de groupes Geometry, Algebraic Representations of groups Lokale Langlands-Vermutung Darstellungstheorie Irreduzible Darstellung Reduktive Gruppe Unitäre Darstellung Langlands-Klassifizierung Algebraische Geometrie |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=003394508&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
volume_link | (DE-604)BV000004120 |
work_keys_str_mv | AT adamsjeffrey thelanglandsclassificationandirreduciblecharactersforrealreductivegroups AT barbaschdan thelanglandsclassificationandirreduciblecharactersforrealreductivegroups AT vogandavida thelanglandsclassificationandirreduciblecharactersforrealreductivegroups |