Teichmüller theory in Riemannian geometry: based on lecture notes by Jochen Denzler
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Basel ; Boston, Mass. ; Berlin
Birkhäuser Verlag
1992
|
Schriftenreihe: | Lectures in Mathematics ETH Zürich
|
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | 220 Seiten graph. Darst. |
ISBN: | 3764327359 0817627359 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV005399276 | ||
003 | DE-604 | ||
005 | 20210511 | ||
007 | t | ||
008 | 920330s1992 sz d||| |||| 00||| eng d | ||
020 | |a 3764327359 |9 3-7643-2735-9 | ||
020 | |a 0817627359 |9 0-8176-2735-9 | ||
020 | |z 3817627359 |9 3-8176-2735-9 | ||
035 | |a (OCoLC)638786102 | ||
035 | |a (DE-599)BVBBV005399276 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
044 | |a sz |c CH | ||
049 | |a DE-384 |a DE-91G |a DE-12 |a DE-739 |a DE-355 |a DE-824 |a DE-29T |a DE-20 |a DE-19 |a DE-634 |a DE-83 |a DE-11 |a DE-188 | ||
080 | |a 515.179.25 | ||
084 | |a SK 750 |0 (DE-625)143254: |2 rvk | ||
084 | |a SK 780 |0 (DE-625)143255: |2 rvk | ||
084 | |a SK 370 |0 (DE-625)143234: |2 rvk | ||
084 | |a 32G15 |2 msc | ||
084 | |a 30F60 |2 msc | ||
100 | 1 | |a Tromba, Anthony J. |d 1943- |e Verfasser |0 (DE-588)142684996 |4 aut | |
245 | 1 | 0 | |a Teichmüller theory in Riemannian geometry |b based on lecture notes by Jochen Denzler |c Anthony J. Tromba |
264 | 1 | |a Basel ; Boston, Mass. ; Berlin |b Birkhäuser Verlag |c 1992 | |
300 | |a 220 Seiten |b graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 0 | |a Lectures in Mathematics ETH Zürich | |
650 | 4 | |a Teichmüller, Espacios de | |
650 | 4 | |a Variedades Riemannianas | |
650 | 0 | 7 | |a Teichmüller-Raum |0 (DE-588)4131425-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Riemannsche Geometrie |0 (DE-588)4128462-8 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Riemannsche Geometrie |0 (DE-588)4128462-8 |D s |
689 | 0 | 1 | |a Teichmüller-Raum |0 (DE-588)4131425-6 |D s |
689 | 0 | |5 DE-604 | |
856 | 4 | 2 | |m HBZ Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=003380571&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-003380571 |
Datensatz im Suchindex
_version_ | 1804119612571254784 |
---|---|
adam_text | Contents
0 Mathematical Preliminaries G
1 The Manifolds of Teichmiiller Theory
1.1 The Manifolds A and A3 14
1.2 The Riemannian Manifolds M and M 18
1.3 The Diffeomorphism M*/V S As 19
1.4 Some Differential Operators and their Adjoints 26
1.5 Proof of Poincare s Theorem 29
1.6 The Manifold Ms_x and the Diffeomorphism with M /V 33
2 The Construction of Teichmiiller Space
2.1 A Rapid Course in Geodesic Theory 36
2.2 The Free Action of T 0 on M-i 38
2.3 The Proper Action of 2 0 on M -1 41
2.4 The Construction of Teichmiiller Space 44
2.5 The Principal Bundles of Teichnuiller Theory 50
2.6 The Weil-Petersson Metric onJ(M) 60
4 Contents
3 T(M) is a Cell
3.1 Dirichlet s Energy on Teichmuller Space 63
3.2 The Properness of Dirichlet s Energy 74
3.3 Teichmuller Space is a Cell 78
3.4 Topological Implications; The Contractibility of T 0 81
4 The Complex Structure on Teichmuller Space
4.1 Almost Complex Principal Fibre Bundles 83
4.2 Abresch-Fischer Holomorphic Coordinates for A 90
4.3 Abresch-Fischer Holomorphic Coordinates for T(M) 94
5 Properties of the Weil-Petersson Metric
5.1 The Weil-Petersson Metric is Kahler 96
5.2 The Natural Algebraic Connection on A 102
5.3 Further Properties of the Algebraic Connection and the
non-Integrability of the Horizontal Distribution on A 106
5.4 The Curvature of Teichmuller Space with Respect to its
Weil-Petersson Metric Ill
5.5 An Asymptotic Property of Weil-Petersson Geodesies 121
6 The Pluri-Subharmonicity of Dirichlet s Energy on T(M);
T(M) is a Stein-Manifold
6.1 Pluri-Subharmonic Functions and Complex Manifolds 123
6.2 Dirichlet s Energy is Strictly Pluri-Subharmonic 126
6.3 Wolf s Form of Dirichlet s Energy on T(M) is Strictly
Weil-Petersson Convex 138
6.4 The Nielsen Realization Problem 152
Contents 5
A Proof of Lichnerowicz Formula 155
B On Harmonic Maps 158
C The Mumford Compactness Theorem 184
D Proof of the Collar Lemma 192
E The Levi-Form of Dirichlet s Energy 196
F Riemann-Roch and the Dimension of Teichmiiller Space 201
Bibliography 205
Indexes
Index of Notation 214
A Chart of the Maps Used 218
Index of Key Words 219
|
any_adam_object | 1 |
author | Tromba, Anthony J. 1943- |
author_GND | (DE-588)142684996 |
author_facet | Tromba, Anthony J. 1943- |
author_role | aut |
author_sort | Tromba, Anthony J. 1943- |
author_variant | a j t aj ajt |
building | Verbundindex |
bvnumber | BV005399276 |
classification_rvk | SK 750 SK 780 SK 370 |
ctrlnum | (OCoLC)638786102 (DE-599)BVBBV005399276 |
discipline | Mathematik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01886nam a2200469 c 4500</leader><controlfield tag="001">BV005399276</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20210511 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">920330s1992 sz d||| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3764327359</subfield><subfield code="9">3-7643-2735-9</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0817627359</subfield><subfield code="9">0-8176-2735-9</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">3817627359</subfield><subfield code="9">3-8176-2735-9</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)638786102</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV005399276</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">sz</subfield><subfield code="c">CH</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-91G</subfield><subfield code="a">DE-12</subfield><subfield code="a">DE-739</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-824</subfield><subfield code="a">DE-29T</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-634</subfield><subfield code="a">DE-83</subfield><subfield code="a">DE-11</subfield><subfield code="a">DE-188</subfield></datafield><datafield tag="080" ind1=" " ind2=" "><subfield code="a">515.179.25</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 750</subfield><subfield code="0">(DE-625)143254:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 780</subfield><subfield code="0">(DE-625)143255:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 370</subfield><subfield code="0">(DE-625)143234:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">32G15</subfield><subfield code="2">msc</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">30F60</subfield><subfield code="2">msc</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Tromba, Anthony J.</subfield><subfield code="d">1943-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)142684996</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Teichmüller theory in Riemannian geometry</subfield><subfield code="b">based on lecture notes by Jochen Denzler</subfield><subfield code="c">Anthony J. Tromba</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Basel ; Boston, Mass. ; Berlin</subfield><subfield code="b">Birkhäuser Verlag</subfield><subfield code="c">1992</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">220 Seiten</subfield><subfield code="b">graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Lectures in Mathematics ETH Zürich</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Teichmüller, Espacios de</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Variedades Riemannianas</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Teichmüller-Raum</subfield><subfield code="0">(DE-588)4131425-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Riemannsche Geometrie</subfield><subfield code="0">(DE-588)4128462-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Riemannsche Geometrie</subfield><subfield code="0">(DE-588)4128462-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Teichmüller-Raum</subfield><subfield code="0">(DE-588)4131425-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HBZ Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=003380571&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-003380571</subfield></datafield></record></collection> |
id | DE-604.BV005399276 |
illustrated | Illustrated |
indexdate | 2024-07-09T16:28:58Z |
institution | BVB |
isbn | 3764327359 0817627359 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-003380571 |
oclc_num | 638786102 |
open_access_boolean | |
owner | DE-384 DE-91G DE-BY-TUM DE-12 DE-739 DE-355 DE-BY-UBR DE-824 DE-29T DE-20 DE-19 DE-BY-UBM DE-634 DE-83 DE-11 DE-188 |
owner_facet | DE-384 DE-91G DE-BY-TUM DE-12 DE-739 DE-355 DE-BY-UBR DE-824 DE-29T DE-20 DE-19 DE-BY-UBM DE-634 DE-83 DE-11 DE-188 |
physical | 220 Seiten graph. Darst. |
publishDate | 1992 |
publishDateSearch | 1992 |
publishDateSort | 1992 |
publisher | Birkhäuser Verlag |
record_format | marc |
series2 | Lectures in Mathematics ETH Zürich |
spelling | Tromba, Anthony J. 1943- Verfasser (DE-588)142684996 aut Teichmüller theory in Riemannian geometry based on lecture notes by Jochen Denzler Anthony J. Tromba Basel ; Boston, Mass. ; Berlin Birkhäuser Verlag 1992 220 Seiten graph. Darst. txt rdacontent n rdamedia nc rdacarrier Lectures in Mathematics ETH Zürich Teichmüller, Espacios de Variedades Riemannianas Teichmüller-Raum (DE-588)4131425-6 gnd rswk-swf Riemannsche Geometrie (DE-588)4128462-8 gnd rswk-swf Riemannsche Geometrie (DE-588)4128462-8 s Teichmüller-Raum (DE-588)4131425-6 s DE-604 HBZ Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=003380571&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Tromba, Anthony J. 1943- Teichmüller theory in Riemannian geometry based on lecture notes by Jochen Denzler Teichmüller, Espacios de Variedades Riemannianas Teichmüller-Raum (DE-588)4131425-6 gnd Riemannsche Geometrie (DE-588)4128462-8 gnd |
subject_GND | (DE-588)4131425-6 (DE-588)4128462-8 |
title | Teichmüller theory in Riemannian geometry based on lecture notes by Jochen Denzler |
title_auth | Teichmüller theory in Riemannian geometry based on lecture notes by Jochen Denzler |
title_exact_search | Teichmüller theory in Riemannian geometry based on lecture notes by Jochen Denzler |
title_full | Teichmüller theory in Riemannian geometry based on lecture notes by Jochen Denzler Anthony J. Tromba |
title_fullStr | Teichmüller theory in Riemannian geometry based on lecture notes by Jochen Denzler Anthony J. Tromba |
title_full_unstemmed | Teichmüller theory in Riemannian geometry based on lecture notes by Jochen Denzler Anthony J. Tromba |
title_short | Teichmüller theory in Riemannian geometry |
title_sort | teichmuller theory in riemannian geometry based on lecture notes by jochen denzler |
title_sub | based on lecture notes by Jochen Denzler |
topic | Teichmüller, Espacios de Variedades Riemannianas Teichmüller-Raum (DE-588)4131425-6 gnd Riemannsche Geometrie (DE-588)4128462-8 gnd |
topic_facet | Teichmüller, Espacios de Variedades Riemannianas Teichmüller-Raum Riemannsche Geometrie |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=003380571&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT trombaanthonyj teichmullertheoryinriemanniangeometrybasedonlecturenotesbyjochendenzler |