Extension spaces of oriented matriods:

Abstract: "We study the space of all extensions of a real hyperplance arrangement by a new pseudo-hyperplane, and, more generally, of an oriented matroid by a new element. The question whether this space has the homotopy type of a sphere is a special case of the 'Generalized Baues Problem&...

Full description

Saved in:
Bibliographic Details
Main Authors: Sturmfels, Bernd 1962- (Author), Ziegler, Günter M. 1963- (Author)
Format: Book
Language:English
Published: Berlin 1991
Series:Konrad-Zuse-Zentrum für Informationstechnik <Berlin>: Preprint SC 1991,11
Subjects:
Summary:Abstract: "We study the space of all extensions of a real hyperplance arrangement by a new pseudo-hyperplane, and, more generally, of an oriented matroid by a new element. The question whether this space has the homotopy type of a sphere is a special case of the 'Generalized Baues Problem' of Billera, Kapranov & Sturmfels, via the Bohne-Dress Theorem on zonotopal tilings. We prove that the extension space is spherical for the class of strongly euclidean oriented matroids. This class includes the alternating matroids and all oriented matroids of rank at most 3 or of corank at most 2. In general it is not even known whether the extension space is connected. We show that the subspace of realizable extensions is always connected but not necessarily spherical."
Physical Description:20 S.

There is no print copy available.

Interlibrary loan Place Request Caution: Not in THWS collection!