Continuous linear representations:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | German |
Veröffentlicht: |
Amsterdam u.a.
North-Holland
1992
|
Schriftenreihe: | North-Holland mathematics studies
168 |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | VII, 301 S. |
ISBN: | 0444890726 |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV004813304 | ||
003 | DE-604 | ||
005 | 20210927 | ||
007 | t | ||
008 | 920428s1992 |||| 00||| gerod | ||
020 | |a 0444890726 |9 0-444-89072-6 | ||
035 | |a (OCoLC)24794460 | ||
035 | |a (DE-599)BVBBV004813304 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a ger | |
049 | |a DE-12 |a DE-384 |a DE-91 |a DE-739 |a DE-824 |a DE-29T |a DE-11 |a DE-188 | ||
050 | 0 | |a QA387 | |
082 | 0 | |a 512/.55 |2 20 | |
084 | |a SK 340 |0 (DE-625)143232: |2 rvk | ||
084 | |a MAT 202f |2 stub | ||
084 | |a MAT 225f |2 stub | ||
100 | 1 | |a Magyar, Zoltán |d 1959- |e Verfasser |0 (DE-588)1241979138 |4 aut | |
245 | 1 | 0 | |a Continuous linear representations |c Zoltán Magyar |
264 | 1 | |a Amsterdam u.a. |b North-Holland |c 1992 | |
300 | |a VII, 301 S. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a North-Holland mathematics studies |v 168 | |
650 | 4 | |a Algèbre Lie | |
650 | 7 | |a Algèbre linéaire |2 ram | |
650 | 4 | |a Groupe Galilée | |
650 | 4 | |a Groupe Poincaré | |
650 | 4 | |a Lie, Groupes de | |
650 | 7 | |a Lie, groupes de |2 ram | |
650 | 4 | |a Mesure Haar | |
650 | 4 | |a Mesure Radon | |
650 | 4 | |a Représentations de groupes | |
650 | 7 | |a Représentations de groupes |2 ram | |
650 | 4 | |a Régularisation | |
650 | 4 | |a Théorie Hille-Yoshida | |
650 | 4 | |a Lie groups | |
650 | 4 | |a Representations of groups | |
650 | 0 | 7 | |a Stetige lineare Darstellung |0 (DE-588)4289273-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Darstellung |g Mathematik |0 (DE-588)4128289-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Lie-Gruppe |0 (DE-588)4035695-4 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Darstellung |g Mathematik |0 (DE-588)4128289-9 |D s |
689 | 0 | 1 | |a Lie-Gruppe |0 (DE-588)4035695-4 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Lie-Gruppe |0 (DE-588)4035695-4 |D s |
689 | 1 | 1 | |a Stetige lineare Darstellung |0 (DE-588)4289273-9 |D s |
689 | 1 | |5 DE-188 | |
830 | 0 | |a North-Holland mathematics studies |v 168 |w (DE-604)BV000003247 |9 168 | |
856 | 4 | 2 | |m HBZ Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=002962309&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
940 | 1 | |n oe | |
999 | |a oai:aleph.bib-bvb.de:BVB01-002962309 |
Datensatz im Suchindex
_version_ | 1804118925734051840 |
---|---|
adam_text | vii
CONTENTS
PREFACE v
0. Introduction 1
1. The Hille Yosida Theory 3
2. Convolution and Regularization 25
3. Smooth Vectors 39
4. Analytic Mollifying 73
5. The Integrability Problem 91
6. Compact Groups 113
7. Commutative Groups 139
8. Induced Representations 155
9. Projective Representations 171
10. The Galilean and Poincare Groups 189
APPENDIX 206
A. Topology 207
B. Measure and Integration 211
C. Functional Analysis 219
D. Analytic Mappings 235
E. Manifolds, Distributions, Differential Operators 241
F. Locally Compact Groups, Lie Groups 269
REFERENCES 283
Index of Notation 291
Index 293
|
any_adam_object | 1 |
author | Magyar, Zoltán 1959- |
author_GND | (DE-588)1241979138 |
author_facet | Magyar, Zoltán 1959- |
author_role | aut |
author_sort | Magyar, Zoltán 1959- |
author_variant | z m zm |
building | Verbundindex |
bvnumber | BV004813304 |
callnumber-first | Q - Science |
callnumber-label | QA387 |
callnumber-raw | QA387 |
callnumber-search | QA387 |
callnumber-sort | QA 3387 |
callnumber-subject | QA - Mathematics |
classification_rvk | SK 340 |
classification_tum | MAT 202f MAT 225f |
ctrlnum | (OCoLC)24794460 (DE-599)BVBBV004813304 |
dewey-full | 512/.55 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 512 - Algebra |
dewey-raw | 512/.55 |
dewey-search | 512/.55 |
dewey-sort | 3512 255 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02310nam a2200637 cb4500</leader><controlfield tag="001">BV004813304</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20210927 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">920428s1992 |||| 00||| gerod</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0444890726</subfield><subfield code="9">0-444-89072-6</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)24794460</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV004813304</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">ger</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-384</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-739</subfield><subfield code="a">DE-824</subfield><subfield code="a">DE-29T</subfield><subfield code="a">DE-11</subfield><subfield code="a">DE-188</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA387</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">512/.55</subfield><subfield code="2">20</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 340</subfield><subfield code="0">(DE-625)143232:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 202f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 225f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Magyar, Zoltán</subfield><subfield code="d">1959-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1241979138</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Continuous linear representations</subfield><subfield code="c">Zoltán Magyar</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Amsterdam u.a.</subfield><subfield code="b">North-Holland</subfield><subfield code="c">1992</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">VII, 301 S.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">North-Holland mathematics studies</subfield><subfield code="v">168</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Algèbre Lie</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Algèbre linéaire</subfield><subfield code="2">ram</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Groupe Galilée</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Groupe Poincaré</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Lie, Groupes de</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Lie, groupes de</subfield><subfield code="2">ram</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mesure Haar</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mesure Radon</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Représentations de groupes</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Représentations de groupes</subfield><subfield code="2">ram</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Régularisation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Théorie Hille-Yoshida</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Lie groups</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Representations of groups</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Stetige lineare Darstellung</subfield><subfield code="0">(DE-588)4289273-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Darstellung</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4128289-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Lie-Gruppe</subfield><subfield code="0">(DE-588)4035695-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Darstellung</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4128289-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Lie-Gruppe</subfield><subfield code="0">(DE-588)4035695-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Lie-Gruppe</subfield><subfield code="0">(DE-588)4035695-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Stetige lineare Darstellung</subfield><subfield code="0">(DE-588)4289273-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-188</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">North-Holland mathematics studies</subfield><subfield code="v">168</subfield><subfield code="w">(DE-604)BV000003247</subfield><subfield code="9">168</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HBZ Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=002962309&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="n">oe</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-002962309</subfield></datafield></record></collection> |
id | DE-604.BV004813304 |
illustrated | Not Illustrated |
indexdate | 2024-07-09T16:18:03Z |
institution | BVB |
isbn | 0444890726 |
language | German |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-002962309 |
oclc_num | 24794460 |
open_access_boolean | |
owner | DE-12 DE-384 DE-91 DE-BY-TUM DE-739 DE-824 DE-29T DE-11 DE-188 |
owner_facet | DE-12 DE-384 DE-91 DE-BY-TUM DE-739 DE-824 DE-29T DE-11 DE-188 |
physical | VII, 301 S. |
publishDate | 1992 |
publishDateSearch | 1992 |
publishDateSort | 1992 |
publisher | North-Holland |
record_format | marc |
series | North-Holland mathematics studies |
series2 | North-Holland mathematics studies |
spelling | Magyar, Zoltán 1959- Verfasser (DE-588)1241979138 aut Continuous linear representations Zoltán Magyar Amsterdam u.a. North-Holland 1992 VII, 301 S. txt rdacontent n rdamedia nc rdacarrier North-Holland mathematics studies 168 Algèbre Lie Algèbre linéaire ram Groupe Galilée Groupe Poincaré Lie, Groupes de Lie, groupes de ram Mesure Haar Mesure Radon Représentations de groupes Représentations de groupes ram Régularisation Théorie Hille-Yoshida Lie groups Representations of groups Stetige lineare Darstellung (DE-588)4289273-9 gnd rswk-swf Darstellung Mathematik (DE-588)4128289-9 gnd rswk-swf Lie-Gruppe (DE-588)4035695-4 gnd rswk-swf Darstellung Mathematik (DE-588)4128289-9 s Lie-Gruppe (DE-588)4035695-4 s DE-604 Stetige lineare Darstellung (DE-588)4289273-9 s DE-188 North-Holland mathematics studies 168 (DE-604)BV000003247 168 HBZ Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=002962309&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Magyar, Zoltán 1959- Continuous linear representations North-Holland mathematics studies Algèbre Lie Algèbre linéaire ram Groupe Galilée Groupe Poincaré Lie, Groupes de Lie, groupes de ram Mesure Haar Mesure Radon Représentations de groupes Représentations de groupes ram Régularisation Théorie Hille-Yoshida Lie groups Representations of groups Stetige lineare Darstellung (DE-588)4289273-9 gnd Darstellung Mathematik (DE-588)4128289-9 gnd Lie-Gruppe (DE-588)4035695-4 gnd |
subject_GND | (DE-588)4289273-9 (DE-588)4128289-9 (DE-588)4035695-4 |
title | Continuous linear representations |
title_auth | Continuous linear representations |
title_exact_search | Continuous linear representations |
title_full | Continuous linear representations Zoltán Magyar |
title_fullStr | Continuous linear representations Zoltán Magyar |
title_full_unstemmed | Continuous linear representations Zoltán Magyar |
title_short | Continuous linear representations |
title_sort | continuous linear representations |
topic | Algèbre Lie Algèbre linéaire ram Groupe Galilée Groupe Poincaré Lie, Groupes de Lie, groupes de ram Mesure Haar Mesure Radon Représentations de groupes Représentations de groupes ram Régularisation Théorie Hille-Yoshida Lie groups Representations of groups Stetige lineare Darstellung (DE-588)4289273-9 gnd Darstellung Mathematik (DE-588)4128289-9 gnd Lie-Gruppe (DE-588)4035695-4 gnd |
topic_facet | Algèbre Lie Algèbre linéaire Groupe Galilée Groupe Poincaré Lie, Groupes de Lie, groupes de Mesure Haar Mesure Radon Représentations de groupes Régularisation Théorie Hille-Yoshida Lie groups Representations of groups Stetige lineare Darstellung Darstellung Mathematik Lie-Gruppe |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=002962309&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
volume_link | (DE-604)BV000003247 |
work_keys_str_mv | AT magyarzoltan continuouslinearrepresentations |