Fractals, chaos, power laws: minutes from an infinite paradise
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
New York
Freeman
1991
|
Schlagworte: | |
Beschreibung: | XVIII, 429 S. Ill., graph. Darst. |
ISBN: | 0716721368 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV004660815 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | t | ||
008 | 911220s1991 ad|| |||| 00||| eng d | ||
020 | |a 0716721368 |9 0-7167-2136-8 | ||
035 | |a (OCoLC)442362954 | ||
035 | |a (DE-599)BVBBV004660815 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-19 |a DE-91G |a DE-20 |a DE-1049 |a DE-522 |a DE-11 |a DE-188 | ||
084 | |a UG 3900 |0 (DE-625)145629: |2 rvk | ||
084 | |a PHY 012f |2 stub | ||
084 | |a PHY 066f |2 stub | ||
100 | 1 | |a Schroeder, Manfred |e Verfasser |4 aut | |
245 | 1 | 0 | |a Fractals, chaos, power laws |b minutes from an infinite paradise |c Manfred Schroeder |
264 | 1 | |a New York |b Freeman |c 1991 | |
300 | |a XVIII, 429 S. |b Ill., graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
650 | 4 | |a fizika - teorija - fraktali - kaos | |
650 | 0 | 7 | |a Symmetrie |0 (DE-588)4058724-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Selbstähnlichkeit |0 (DE-588)4286650-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Skalierungsgesetz |0 (DE-588)4205012-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Chaostheorie |0 (DE-588)4009754-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Fraktal |0 (DE-588)4123220-3 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Chaos |0 (DE-588)4191419-3 |2 gnd |9 rswk-swf |
655 | 7 | |8 1\p |0 (DE-588)4144384-6 |a Beispielsammlung |2 gnd-content | |
689 | 0 | 0 | |a Chaos |0 (DE-588)4191419-3 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Selbstähnlichkeit |0 (DE-588)4286650-9 |D s |
689 | 1 | 1 | |a Fraktal |0 (DE-588)4123220-3 |D s |
689 | 1 | 2 | |a Chaostheorie |0 (DE-588)4009754-7 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
689 | 2 | 0 | |a Symmetrie |0 (DE-588)4058724-1 |D s |
689 | 2 | 1 | |a Fraktal |0 (DE-588)4123220-3 |D s |
689 | 2 | |8 3\p |5 DE-604 | |
689 | 3 | 0 | |a Skalierungsgesetz |0 (DE-588)4205012-1 |D s |
689 | 3 | |8 4\p |5 DE-604 | |
999 | |a oai:aleph.bib-bvb.de:BVB01-002863111 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 3\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 4\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804118779428339712 |
---|---|
any_adam_object | |
author | Schroeder, Manfred |
author_facet | Schroeder, Manfred |
author_role | aut |
author_sort | Schroeder, Manfred |
author_variant | m s ms |
building | Verbundindex |
bvnumber | BV004660815 |
classification_rvk | UG 3900 |
classification_tum | PHY 012f PHY 066f |
ctrlnum | (OCoLC)442362954 (DE-599)BVBBV004660815 |
discipline | Physik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02198nam a2200565 c 4500</leader><controlfield tag="001">BV004660815</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">911220s1991 ad|| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0716721368</subfield><subfield code="9">0-7167-2136-8</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)442362954</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV004660815</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-91G</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-1049</subfield><subfield code="a">DE-522</subfield><subfield code="a">DE-11</subfield><subfield code="a">DE-188</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UG 3900</subfield><subfield code="0">(DE-625)145629:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">PHY 012f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">PHY 066f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Schroeder, Manfred</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Fractals, chaos, power laws</subfield><subfield code="b">minutes from an infinite paradise</subfield><subfield code="c">Manfred Schroeder</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York</subfield><subfield code="b">Freeman</subfield><subfield code="c">1991</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XVIII, 429 S.</subfield><subfield code="b">Ill., graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">fizika - teorija - fraktali - kaos</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Symmetrie</subfield><subfield code="0">(DE-588)4058724-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Selbstähnlichkeit</subfield><subfield code="0">(DE-588)4286650-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Skalierungsgesetz</subfield><subfield code="0">(DE-588)4205012-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Chaostheorie</subfield><subfield code="0">(DE-588)4009754-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Fraktal</subfield><subfield code="0">(DE-588)4123220-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Chaos</subfield><subfield code="0">(DE-588)4191419-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="8">1\p</subfield><subfield code="0">(DE-588)4144384-6</subfield><subfield code="a">Beispielsammlung</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Chaos</subfield><subfield code="0">(DE-588)4191419-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Selbstähnlichkeit</subfield><subfield code="0">(DE-588)4286650-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Fraktal</subfield><subfield code="0">(DE-588)4123220-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="2"><subfield code="a">Chaostheorie</subfield><subfield code="0">(DE-588)4009754-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Symmetrie</subfield><subfield code="0">(DE-588)4058724-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2="1"><subfield code="a">Fraktal</subfield><subfield code="0">(DE-588)4123220-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="8">3\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="3" ind2="0"><subfield code="a">Skalierungsgesetz</subfield><subfield code="0">(DE-588)4205012-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="3" ind2=" "><subfield code="8">4\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-002863111</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">3\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">4\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
genre | 1\p (DE-588)4144384-6 Beispielsammlung gnd-content |
genre_facet | Beispielsammlung |
id | DE-604.BV004660815 |
illustrated | Illustrated |
indexdate | 2024-07-09T16:15:43Z |
institution | BVB |
isbn | 0716721368 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-002863111 |
oclc_num | 442362954 |
open_access_boolean | |
owner | DE-384 DE-19 DE-BY-UBM DE-91G DE-BY-TUM DE-20 DE-1049 DE-522 DE-11 DE-188 |
owner_facet | DE-384 DE-19 DE-BY-UBM DE-91G DE-BY-TUM DE-20 DE-1049 DE-522 DE-11 DE-188 |
physical | XVIII, 429 S. Ill., graph. Darst. |
publishDate | 1991 |
publishDateSearch | 1991 |
publishDateSort | 1991 |
publisher | Freeman |
record_format | marc |
spelling | Schroeder, Manfred Verfasser aut Fractals, chaos, power laws minutes from an infinite paradise Manfred Schroeder New York Freeman 1991 XVIII, 429 S. Ill., graph. Darst. txt rdacontent n rdamedia nc rdacarrier fizika - teorija - fraktali - kaos Symmetrie (DE-588)4058724-1 gnd rswk-swf Selbstähnlichkeit (DE-588)4286650-9 gnd rswk-swf Skalierungsgesetz (DE-588)4205012-1 gnd rswk-swf Chaostheorie (DE-588)4009754-7 gnd rswk-swf Fraktal (DE-588)4123220-3 gnd rswk-swf Chaos (DE-588)4191419-3 gnd rswk-swf 1\p (DE-588)4144384-6 Beispielsammlung gnd-content Chaos (DE-588)4191419-3 s DE-604 Selbstähnlichkeit (DE-588)4286650-9 s Fraktal (DE-588)4123220-3 s Chaostheorie (DE-588)4009754-7 s 2\p DE-604 Symmetrie (DE-588)4058724-1 s 3\p DE-604 Skalierungsgesetz (DE-588)4205012-1 s 4\p DE-604 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 3\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 4\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Schroeder, Manfred Fractals, chaos, power laws minutes from an infinite paradise fizika - teorija - fraktali - kaos Symmetrie (DE-588)4058724-1 gnd Selbstähnlichkeit (DE-588)4286650-9 gnd Skalierungsgesetz (DE-588)4205012-1 gnd Chaostheorie (DE-588)4009754-7 gnd Fraktal (DE-588)4123220-3 gnd Chaos (DE-588)4191419-3 gnd |
subject_GND | (DE-588)4058724-1 (DE-588)4286650-9 (DE-588)4205012-1 (DE-588)4009754-7 (DE-588)4123220-3 (DE-588)4191419-3 (DE-588)4144384-6 |
title | Fractals, chaos, power laws minutes from an infinite paradise |
title_auth | Fractals, chaos, power laws minutes from an infinite paradise |
title_exact_search | Fractals, chaos, power laws minutes from an infinite paradise |
title_full | Fractals, chaos, power laws minutes from an infinite paradise Manfred Schroeder |
title_fullStr | Fractals, chaos, power laws minutes from an infinite paradise Manfred Schroeder |
title_full_unstemmed | Fractals, chaos, power laws minutes from an infinite paradise Manfred Schroeder |
title_short | Fractals, chaos, power laws |
title_sort | fractals chaos power laws minutes from an infinite paradise |
title_sub | minutes from an infinite paradise |
topic | fizika - teorija - fraktali - kaos Symmetrie (DE-588)4058724-1 gnd Selbstähnlichkeit (DE-588)4286650-9 gnd Skalierungsgesetz (DE-588)4205012-1 gnd Chaostheorie (DE-588)4009754-7 gnd Fraktal (DE-588)4123220-3 gnd Chaos (DE-588)4191419-3 gnd |
topic_facet | fizika - teorija - fraktali - kaos Symmetrie Selbstähnlichkeit Skalierungsgesetz Chaostheorie Fraktal Chaos Beispielsammlung |
work_keys_str_mv | AT schroedermanfred fractalschaospowerlawsminutesfromaninfiniteparadise |