Fundamental algorithms for permutation groups:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Berlin [u.a.]
Springer
1991
|
Schriftenreihe: | Lecture notes in computer science
559 |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | XII, 238 S. |
ISBN: | 3540549552 0387549552 |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV004629793 | ||
003 | DE-604 | ||
005 | 20160415 | ||
007 | t| | ||
008 | 911021s1991 gw |||| 00||| eng d | ||
020 | |a 3540549552 |9 3-540-54955-2 | ||
020 | |a 0387549552 |9 0-387-54955-2 | ||
035 | |a (OCoLC)231254092 | ||
035 | |a (DE-599)BVBBV004629793 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
044 | |a gw |c DE | ||
049 | |a DE-384 |a DE-19 |a DE-12 |a DE-703 |a DE-739 |a DE-20 |a DE-91G |a DE-706 |a DE-83 |a DE-188 |a DE-11 | ||
084 | |a MAT 201f |2 stub | ||
084 | |a DAT 535f |2 stub | ||
100 | 1 | |a Butler, Gregory |d 1953- |e Verfasser |0 (DE-588)1022348884 |4 aut | |
245 | 1 | 0 | |a Fundamental algorithms for permutation groups |c G. Butler |
264 | 1 | |a Berlin [u.a.] |b Springer |c 1991 | |
300 | |a XII, 238 S. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Lecture notes in computer science |v 559 | |
650 | 4 | |a Algorithms | |
650 | 4 | |a Permutation groups | |
650 | 0 | 7 | |a Permutationsgruppe |0 (DE-588)4173833-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Gruppentheorie |0 (DE-588)4072157-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Algorithmus |0 (DE-588)4001183-5 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Permutationsgruppe |0 (DE-588)4173833-0 |D s |
689 | 0 | 1 | |a Algorithmus |0 (DE-588)4001183-5 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Gruppentheorie |0 (DE-588)4072157-7 |D s |
689 | 1 | 1 | |a Algorithmus |0 (DE-588)4001183-5 |D s |
689 | 1 | |5 DE-604 | |
830 | 0 | |a Lecture notes in computer science |v 559 |w (DE-604)BV000000607 |9 559 | |
856 | 4 | 2 | |m HBZ Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=002842960&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-002842960 |
Datensatz im Suchindex
_version_ | 1820874838853550080 |
---|---|
adam_text |
Contents
Part 1: Small Groups
1. Introduction 1
Machine Representation of Groups — Systems — Some Applications
Bibliographical Remarks
2. Group Theory Background 7
Groups — Permutations — Subgroups and Cosets — Conjugates and Normal
Subgroups — Commuting Elements — Exercises
Bibliographical Remarks
3. List of Elements 14
Obvious Approach from First Principles — A Trivial Improvement — Induc¬
tion on the Length of Products — One Generator Groups — Induction on the
Generators — Simple Algorithm of Dimino — Complete Algorithm of Dimino
— Uses — Summary — Exercises
Bibliographical Remarks
4. Searching Small Groups 24
Linear Search of the List of Elements — Searching as a Discarding Process —
Another Example — Finding All Elements — Analysis — Multiple Discarding
— Summary — Exercises
Bibliographical Remarks
5. Cayley Graph and Defining Relations 33
Definitions — Start with a Spanning Tree — The Colouring Algorithm —
Example — Another Example — Analysis — Summary — Exercises
Bibliographical Remarks
6. Lattice of Subgroups 44
Lattices and Layers — Constructing the Next Layer — How to Test a Sub¬
group is New — Eliminating the Normality Test — Using Elements of Prime
Power Order — Using Subgroups of Prime Power Order — Full Lattice Algo¬
rithm for Soluble Subgroups — Analysis — Saving Space — Perfect Subgroups
— Summary — Exercises
Bibliographical Remarks
Part 2: Permutation Groups
7. Orbits and Schreier Vectors 56
Orbits — Schreier Vectors — Analysis of Algorithm 3 — Summary — Exer¬
cises
Bibliographical Remarks
8. Regularity 64
Definitions and a First Algorithm — Parallel Testing of Regularity — Testing
Semiregularity — Summary — Exercises
Bibliographical Remarks
9. Primitivity 71
Definitions — Finest Invariant Partition — Eliminating Redundant Checking
— Testing Primitivity — Summary — Exercises
Bibliographical Remarks
10. Inductive Foundation 78
Definitions — Examples — Representing Elements and Testing Membership
— Enumerating All Elements — Summary — Exercises
Bibliographical Remarks
11. Backtrack Search 98
Strong Generators of the Subgroup — First in Orbit — Restrictions on Im¬
age Points — Choosing an Appropriate Base — Using a Known Subgroup —
Searching Images of an Initial Base Segment — More on Cosets — Preprocess¬
ing — Case Study 1: Centralizer — Case Study 2: Normalizer— Case Study
3: Intersection — Case Study 4: Set Stabiliser — Summary — Exercises
Bibliographical Remarks
12. Base Change 117
Other Bases — Interchanging Adjacent Base Points — Example — Exam¬
ple — Analysis of Interchanging Base Points — Removing Redundant Strong
Generators — Conjugation and the Complete Algorithm — Example — Sum¬
mary — Exercises
Bibliographical Remarks
13. Schreier Sims Method 129
Verifying Strong Generation — Schreier Generators — Example — Avoid
Rechecking Schreier Generators — Stripping Schreier Generators — Variations
of the Schreier Sims Method — Summary — Exercises
Bibliographical Remarks
14. Complexity of the Schreier Sims Method 143
Furst, Hopcroft, and Luks — Knuth — Jerrum — Summary — Exercises
Bibliographical Remarks
Part 3: Homomorphisms and Their Use
15. Homomorphisms 156
Homomorphisms — Overview — Transitive Constituent Homomorphism —
Blocks Homomorphism — Other Homomorphisms — Summary — Exercises
Bibliographical Remarks
16. Sylow Subgroups 171
Homomorphic Images of Centralizers — Restricting to Orbits — Finding Cen
tralizers — Random Elements — More on Blocks Homomorphisms — Primi¬
tive Groups — Summary — Exercises
Bibliographical Remarks
17. P Groups and Soluble Groups 184
Presentations — PC Presentations of Soluble Groups — PC Presentations
of p Groups — Collection — Consistency — Elements and Subgroups of p
Groups — Conjugacy Classes of Elements of p Groups — Sylow Subgroups of
Soluble Groups — Summary — Exercises
Bibliographical Remarks
18. Soluble Permutation Groups 205
Combining Series Generators and Strong Generators — Cyclically Extended
Schreier Vectors — Using Homomorphisms — Computing with the Isomor¬
phism — Subnormal Series: p Groups — Subnormal Series: Soluble Groups
— Subnormal Series: Soluble Schreier Method — Conditioned PC Presen¬
tation of a p Group — Conditioned PC Presentation of a Soluble Group —
Summary — Exercises
Bibliographical Remarks
19. Some Other Algorithms 229
Single Coset Enumeration — Double Coset Enumeration — Verify — Conju¬
gacy Classes of Elements — Cohomology — Group Recognition — Composi¬
tion factors — Some Ideas From Complexity Results
Index of Algorithms 233
Index of Definitions 236 |
any_adam_object | 1 |
author | Butler, Gregory 1953- |
author_GND | (DE-588)1022348884 |
author_facet | Butler, Gregory 1953- |
author_role | aut |
author_sort | Butler, Gregory 1953- |
author_variant | g b gb |
building | Verbundindex |
bvnumber | BV004629793 |
classification_rvk | SS 4800 |
classification_tum | MAT 201f DAT 535f |
ctrlnum | (OCoLC)231254092 (DE-599)BVBBV004629793 |
discipline | Informatik Mathematik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nam a2200000 cb4500</leader><controlfield tag="001">BV004629793</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20160415</controlfield><controlfield tag="007">t|</controlfield><controlfield tag="008">911021s1991 gw |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3540549552</subfield><subfield code="9">3-540-54955-2</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0387549552</subfield><subfield code="9">0-387-54955-2</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)231254092</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV004629793</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">DE</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-12</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-739</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-91G</subfield><subfield code="a">DE-706</subfield><subfield code="a">DE-83</subfield><subfield code="a">DE-188</subfield><subfield code="a">DE-11</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 201f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">DAT 535f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Butler, Gregory</subfield><subfield code="d">1953-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1022348884</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Fundamental algorithms for permutation groups</subfield><subfield code="c">G. Butler</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin [u.a.]</subfield><subfield code="b">Springer</subfield><subfield code="c">1991</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XII, 238 S.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Lecture notes in computer science</subfield><subfield code="v">559</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Algorithms</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Permutation groups</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Permutationsgruppe</subfield><subfield code="0">(DE-588)4173833-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Gruppentheorie</subfield><subfield code="0">(DE-588)4072157-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Algorithmus</subfield><subfield code="0">(DE-588)4001183-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Permutationsgruppe</subfield><subfield code="0">(DE-588)4173833-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Algorithmus</subfield><subfield code="0">(DE-588)4001183-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Gruppentheorie</subfield><subfield code="0">(DE-588)4072157-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Algorithmus</subfield><subfield code="0">(DE-588)4001183-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Lecture notes in computer science</subfield><subfield code="v">559</subfield><subfield code="w">(DE-604)BV000000607</subfield><subfield code="9">559</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HBZ Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=002842960&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-002842960</subfield></datafield></record></collection> |
id | DE-604.BV004629793 |
illustrated | Not Illustrated |
indexdate | 2025-01-10T15:06:07Z |
institution | BVB |
isbn | 3540549552 0387549552 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-002842960 |
oclc_num | 231254092 |
open_access_boolean | |
owner | DE-384 DE-19 DE-BY-UBM DE-12 DE-703 DE-739 DE-20 DE-91G DE-BY-TUM DE-706 DE-83 DE-188 DE-11 |
owner_facet | DE-384 DE-19 DE-BY-UBM DE-12 DE-703 DE-739 DE-20 DE-91G DE-BY-TUM DE-706 DE-83 DE-188 DE-11 |
physical | XII, 238 S. |
publishDate | 1991 |
publishDateSearch | 1991 |
publishDateSort | 1991 |
publisher | Springer |
record_format | marc |
series | Lecture notes in computer science |
series2 | Lecture notes in computer science |
spelling | Butler, Gregory 1953- Verfasser (DE-588)1022348884 aut Fundamental algorithms for permutation groups G. Butler Berlin [u.a.] Springer 1991 XII, 238 S. txt rdacontent n rdamedia nc rdacarrier Lecture notes in computer science 559 Algorithms Permutation groups Permutationsgruppe (DE-588)4173833-0 gnd rswk-swf Gruppentheorie (DE-588)4072157-7 gnd rswk-swf Algorithmus (DE-588)4001183-5 gnd rswk-swf Permutationsgruppe (DE-588)4173833-0 s Algorithmus (DE-588)4001183-5 s DE-604 Gruppentheorie (DE-588)4072157-7 s Lecture notes in computer science 559 (DE-604)BV000000607 559 HBZ Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=002842960&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Butler, Gregory 1953- Fundamental algorithms for permutation groups Lecture notes in computer science Algorithms Permutation groups Permutationsgruppe (DE-588)4173833-0 gnd Gruppentheorie (DE-588)4072157-7 gnd Algorithmus (DE-588)4001183-5 gnd |
subject_GND | (DE-588)4173833-0 (DE-588)4072157-7 (DE-588)4001183-5 |
title | Fundamental algorithms for permutation groups |
title_auth | Fundamental algorithms for permutation groups |
title_exact_search | Fundamental algorithms for permutation groups |
title_full | Fundamental algorithms for permutation groups G. Butler |
title_fullStr | Fundamental algorithms for permutation groups G. Butler |
title_full_unstemmed | Fundamental algorithms for permutation groups G. Butler |
title_short | Fundamental algorithms for permutation groups |
title_sort | fundamental algorithms for permutation groups |
topic | Algorithms Permutation groups Permutationsgruppe (DE-588)4173833-0 gnd Gruppentheorie (DE-588)4072157-7 gnd Algorithmus (DE-588)4001183-5 gnd |
topic_facet | Algorithms Permutation groups Permutationsgruppe Gruppentheorie Algorithmus |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=002842960&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
volume_link | (DE-604)BV000000607 |
work_keys_str_mv | AT butlergregory fundamentalalgorithmsforpermutationgroups |