On the limits of operator splitting: numerical experiments for the complex Burgers equation
Abstract: "A high resolution Godunov-type method is developed and applied to a two-dimensional version of the Burgers equation. On one- dimensional testproblems [sic] the scheme is second order accurate for smooth flow and resolves discontinuities sharply. On two-dimensional problems, however,...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Berlin
1991
|
Schriftenreihe: | Konrad-Zuse-Zentrum für Informationstechnik <Berlin>: Technical report
1991,3 |
Schlagworte: | |
Zusammenfassung: | Abstract: "A high resolution Godunov-type method is developed and applied to a two-dimensional version of the Burgers equation. On one- dimensional testproblems [sic] the scheme is second order accurate for smooth flow and resolves discontinuities sharply. On two-dimensional problems, however, large numerical oscillations are introduced when discontinuities traveling obliquely to the grid directions are present. These oscillations are caused by a Strang-type operator splitting, and cannot be eliminated using flux limiters or small timesteps." |
Beschreibung: | 30 S. |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV004354178 | ||
003 | DE-604 | ||
005 | 19980204 | ||
007 | t | ||
008 | 910523s1991 |||| 00||| engod | ||
035 | |a (OCoLC)25422148 | ||
035 | |a (DE-599)BVBBV004354178 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
049 | |a DE-12 | ||
100 | 1 | |a Noelle, Sebastian |e Verfasser |4 aut | |
245 | 1 | 0 | |a On the limits of operator splitting |b numerical experiments for the complex Burgers equation |c Sebastian W. C. Noelle |
264 | 1 | |a Berlin |c 1991 | |
300 | |a 30 S. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Konrad-Zuse-Zentrum für Informationstechnik <Berlin>: Technical report |v 1991,3 | |
520 | 3 | |a Abstract: "A high resolution Godunov-type method is developed and applied to a two-dimensional version of the Burgers equation. On one- dimensional testproblems [sic] the scheme is second order accurate for smooth flow and resolves discontinuities sharply. On two-dimensional problems, however, large numerical oscillations are introduced when discontinuities traveling obliquely to the grid directions are present. These oscillations are caused by a Strang-type operator splitting, and cannot be eliminated using flux limiters or small timesteps." | |
650 | 4 | |a Computer graphics | |
650 | 4 | |a Numerical analysis | |
830 | 0 | |a Konrad-Zuse-Zentrum für Informationstechnik <Berlin>: Technical report |v 1991,3 |w (DE-604)BV005567559 |9 1991,3 | |
999 | |a oai:aleph.bib-bvb.de:BVB01-002703993 |
Datensatz im Suchindex
_version_ | 1804118535923826688 |
---|---|
any_adam_object | |
author | Noelle, Sebastian |
author_facet | Noelle, Sebastian |
author_role | aut |
author_sort | Noelle, Sebastian |
author_variant | s n sn |
building | Verbundindex |
bvnumber | BV004354178 |
ctrlnum | (OCoLC)25422148 (DE-599)BVBBV004354178 |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01546nam a2200301 cb4500</leader><controlfield tag="001">BV004354178</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">19980204 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">910523s1991 |||| 00||| engod</controlfield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)25422148</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV004354178</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Noelle, Sebastian</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">On the limits of operator splitting</subfield><subfield code="b">numerical experiments for the complex Burgers equation</subfield><subfield code="c">Sebastian W. C. Noelle</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin</subfield><subfield code="c">1991</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">30 S.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Konrad-Zuse-Zentrum für Informationstechnik <Berlin>: Technical report</subfield><subfield code="v">1991,3</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">Abstract: "A high resolution Godunov-type method is developed and applied to a two-dimensional version of the Burgers equation. On one- dimensional testproblems [sic] the scheme is second order accurate for smooth flow and resolves discontinuities sharply. On two-dimensional problems, however, large numerical oscillations are introduced when discontinuities traveling obliquely to the grid directions are present. These oscillations are caused by a Strang-type operator splitting, and cannot be eliminated using flux limiters or small timesteps."</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computer graphics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Numerical analysis</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Konrad-Zuse-Zentrum für Informationstechnik <Berlin>: Technical report</subfield><subfield code="v">1991,3</subfield><subfield code="w">(DE-604)BV005567559</subfield><subfield code="9">1991,3</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-002703993</subfield></datafield></record></collection> |
id | DE-604.BV004354178 |
illustrated | Not Illustrated |
indexdate | 2024-07-09T16:11:51Z |
institution | BVB |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-002703993 |
oclc_num | 25422148 |
open_access_boolean | |
owner | DE-12 |
owner_facet | DE-12 |
physical | 30 S. |
publishDate | 1991 |
publishDateSearch | 1991 |
publishDateSort | 1991 |
record_format | marc |
series | Konrad-Zuse-Zentrum für Informationstechnik <Berlin>: Technical report |
series2 | Konrad-Zuse-Zentrum für Informationstechnik <Berlin>: Technical report |
spelling | Noelle, Sebastian Verfasser aut On the limits of operator splitting numerical experiments for the complex Burgers equation Sebastian W. C. Noelle Berlin 1991 30 S. txt rdacontent n rdamedia nc rdacarrier Konrad-Zuse-Zentrum für Informationstechnik <Berlin>: Technical report 1991,3 Abstract: "A high resolution Godunov-type method is developed and applied to a two-dimensional version of the Burgers equation. On one- dimensional testproblems [sic] the scheme is second order accurate for smooth flow and resolves discontinuities sharply. On two-dimensional problems, however, large numerical oscillations are introduced when discontinuities traveling obliquely to the grid directions are present. These oscillations are caused by a Strang-type operator splitting, and cannot be eliminated using flux limiters or small timesteps." Computer graphics Numerical analysis Konrad-Zuse-Zentrum für Informationstechnik <Berlin>: Technical report 1991,3 (DE-604)BV005567559 1991,3 |
spellingShingle | Noelle, Sebastian On the limits of operator splitting numerical experiments for the complex Burgers equation Konrad-Zuse-Zentrum für Informationstechnik <Berlin>: Technical report Computer graphics Numerical analysis |
title | On the limits of operator splitting numerical experiments for the complex Burgers equation |
title_auth | On the limits of operator splitting numerical experiments for the complex Burgers equation |
title_exact_search | On the limits of operator splitting numerical experiments for the complex Burgers equation |
title_full | On the limits of operator splitting numerical experiments for the complex Burgers equation Sebastian W. C. Noelle |
title_fullStr | On the limits of operator splitting numerical experiments for the complex Burgers equation Sebastian W. C. Noelle |
title_full_unstemmed | On the limits of operator splitting numerical experiments for the complex Burgers equation Sebastian W. C. Noelle |
title_short | On the limits of operator splitting |
title_sort | on the limits of operator splitting numerical experiments for the complex burgers equation |
title_sub | numerical experiments for the complex Burgers equation |
topic | Computer graphics Numerical analysis |
topic_facet | Computer graphics Numerical analysis |
volume_link | (DE-604)BV005567559 |
work_keys_str_mv | AT noellesebastian onthelimitsofoperatorsplittingnumericalexperimentsforthecomplexburgersequation |