On first order necessary conditions for variational and optimal control problems:
A general variational problem is considered which contains most control problems as special cases. Included are differential constraints as well as isoparametric and finite inequalities on both state and control vairables. The method of M. R. Hestenes for proving first order necessary conditions is...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Los Angeles, Calif.
1964
|
Schlagworte: | |
Zusammenfassung: | A general variational problem is considered which contains most control problems as special cases. Included are differential constraints as well as isoparametric and finite inequalities on both state and control vairables. The method of M. R. Hestenes for proving first order necessary conditions is used to obtain similar conditions under weaker hypothesis, principally requiring Lebeque integrability of all functions with respect to time. It is then shown these results can be easily extended to include the problem with inequality constraints on the space variables independent of control variables. (Author). |
Beschreibung: | Los Angeles, Calif., Univ. of Calif., Diss. |
Beschreibung: | 91 Bl. |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV004322346 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | t | ||
008 | 910424s1964 |||| 00||| engod | ||
035 | |a (OCoLC)227354605 | ||
035 | |a (DE-599)BVBBV004322346 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
049 | |a DE-91G | ||
100 | 1 | |a Guinn, Theodore |e Verfasser |4 aut | |
245 | 1 | 0 | |a On first order necessary conditions for variational and optimal control problems |
264 | 1 | |a Los Angeles, Calif. |c 1964 | |
300 | |a 91 Bl. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
500 | |a Los Angeles, Calif., Univ. of Calif., Diss. | ||
520 | 3 | |a A general variational problem is considered which contains most control problems as special cases. Included are differential constraints as well as isoparametric and finite inequalities on both state and control vairables. The method of M. R. Hestenes for proving first order necessary conditions is used to obtain similar conditions under weaker hypothesis, principally requiring Lebeque integrability of all functions with respect to time. It is then shown these results can be easily extended to include the problem with inequality constraints on the space variables independent of control variables. (Author). | |
650 | 4 | |a CONTROL THEORY | |
650 | 7 | |a (Control systems |2 dtict | |
650 | 7 | |a (Nonlinear systems |2 dtict | |
650 | 7 | |a Calculus of variations |2 dtict | |
650 | 7 | |a Control) |2 dtict | |
650 | 7 | |a Equations |2 dtict | |
650 | 7 | |a Functions(mathematics) |2 dtict | |
650 | 7 | |a Inequalities |2 dtict | |
650 | 7 | |a Integrals |2 dtict | |
650 | 7 | |a Numerical integration |2 dtict | |
650 | 7 | |a Optimization) |2 dtict | |
655 | 7 | |8 1\p |0 (DE-588)4113937-9 |a Hochschulschrift |2 gnd-content | |
999 | |a oai:aleph.bib-bvb.de:BVB01-002687849 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804118511104032768 |
---|---|
any_adam_object | |
author | Guinn, Theodore |
author_facet | Guinn, Theodore |
author_role | aut |
author_sort | Guinn, Theodore |
author_variant | t g tg |
building | Verbundindex |
bvnumber | BV004322346 |
ctrlnum | (OCoLC)227354605 (DE-599)BVBBV004322346 |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01937nam a2200421 c 4500</leader><controlfield tag="001">BV004322346</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">910424s1964 |||| 00||| engod</controlfield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)227354605</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV004322346</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91G</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Guinn, Theodore</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">On first order necessary conditions for variational and optimal control problems</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Los Angeles, Calif.</subfield><subfield code="c">1964</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">91 Bl.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Los Angeles, Calif., Univ. of Calif., Diss.</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">A general variational problem is considered which contains most control problems as special cases. Included are differential constraints as well as isoparametric and finite inequalities on both state and control vairables. The method of M. R. Hestenes for proving first order necessary conditions is used to obtain similar conditions under weaker hypothesis, principally requiring Lebeque integrability of all functions with respect to time. It is then shown these results can be easily extended to include the problem with inequality constraints on the space variables independent of control variables. (Author).</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">CONTROL THEORY</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">(Control systems</subfield><subfield code="2">dtict</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">(Nonlinear systems</subfield><subfield code="2">dtict</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Calculus of variations</subfield><subfield code="2">dtict</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Control)</subfield><subfield code="2">dtict</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Equations</subfield><subfield code="2">dtict</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Functions(mathematics)</subfield><subfield code="2">dtict</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Inequalities</subfield><subfield code="2">dtict</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Integrals</subfield><subfield code="2">dtict</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Numerical integration</subfield><subfield code="2">dtict</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Optimization)</subfield><subfield code="2">dtict</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="8">1\p</subfield><subfield code="0">(DE-588)4113937-9</subfield><subfield code="a">Hochschulschrift</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-002687849</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
genre | 1\p (DE-588)4113937-9 Hochschulschrift gnd-content |
genre_facet | Hochschulschrift |
id | DE-604.BV004322346 |
illustrated | Not Illustrated |
indexdate | 2024-07-09T16:11:27Z |
institution | BVB |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-002687849 |
oclc_num | 227354605 |
open_access_boolean | |
owner | DE-91G DE-BY-TUM |
owner_facet | DE-91G DE-BY-TUM |
physical | 91 Bl. |
publishDate | 1964 |
publishDateSearch | 1964 |
publishDateSort | 1964 |
record_format | marc |
spelling | Guinn, Theodore Verfasser aut On first order necessary conditions for variational and optimal control problems Los Angeles, Calif. 1964 91 Bl. txt rdacontent n rdamedia nc rdacarrier Los Angeles, Calif., Univ. of Calif., Diss. A general variational problem is considered which contains most control problems as special cases. Included are differential constraints as well as isoparametric and finite inequalities on both state and control vairables. The method of M. R. Hestenes for proving first order necessary conditions is used to obtain similar conditions under weaker hypothesis, principally requiring Lebeque integrability of all functions with respect to time. It is then shown these results can be easily extended to include the problem with inequality constraints on the space variables independent of control variables. (Author). CONTROL THEORY (Control systems dtict (Nonlinear systems dtict Calculus of variations dtict Control) dtict Equations dtict Functions(mathematics) dtict Inequalities dtict Integrals dtict Numerical integration dtict Optimization) dtict 1\p (DE-588)4113937-9 Hochschulschrift gnd-content 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Guinn, Theodore On first order necessary conditions for variational and optimal control problems CONTROL THEORY (Control systems dtict (Nonlinear systems dtict Calculus of variations dtict Control) dtict Equations dtict Functions(mathematics) dtict Inequalities dtict Integrals dtict Numerical integration dtict Optimization) dtict |
subject_GND | (DE-588)4113937-9 |
title | On first order necessary conditions for variational and optimal control problems |
title_auth | On first order necessary conditions for variational and optimal control problems |
title_exact_search | On first order necessary conditions for variational and optimal control problems |
title_full | On first order necessary conditions for variational and optimal control problems |
title_fullStr | On first order necessary conditions for variational and optimal control problems |
title_full_unstemmed | On first order necessary conditions for variational and optimal control problems |
title_short | On first order necessary conditions for variational and optimal control problems |
title_sort | on first order necessary conditions for variational and optimal control problems |
topic | CONTROL THEORY (Control systems dtict (Nonlinear systems dtict Calculus of variations dtict Control) dtict Equations dtict Functions(mathematics) dtict Inequalities dtict Integrals dtict Numerical integration dtict Optimization) dtict |
topic_facet | CONTROL THEORY (Control systems (Nonlinear systems Calculus of variations Control) Equations Functions(mathematics) Inequalities Integrals Numerical integration Optimization) Hochschulschrift |
work_keys_str_mv | AT guinntheodore onfirstordernecessaryconditionsforvariationalandoptimalcontrolproblems |