On-Line coupled LC-GC:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Heidelberg
Hüthig
1991
|
Schriftenreihe: | Chromatographic methods
|
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | Literaturverz. S. 432 - 448 |
Beschreibung: | XXVII, 462 S. zahlr. graph. Darst. |
ISBN: | 3778518720 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV004261901 | ||
003 | DE-604 | ||
005 | 20030129 | ||
007 | t | ||
008 | 910211s1991 d||| |||| 00||| eng d | ||
020 | |a 3778518720 |9 3-7785-1872-0 | ||
035 | |a (OCoLC)24694713 | ||
035 | |a (DE-599)BVBBV004261901 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
049 | |a DE-703 |a DE-355 |a DE-20 |a DE-91G |a DE-83 | ||
050 | 0 | |a QP519.9.C47 | |
082 | 0 | |a 543/.0894 |2 20 | |
084 | |a VG 7500 |0 (DE-625)147206:253 |2 rvk | ||
084 | |a CHE 232f |2 stub | ||
084 | |a CHE 230f |2 stub | ||
084 | |a CHE 234f |2 stub | ||
100 | 1 | |a Grob, Konrad |e Verfasser |4 aut | |
245 | 1 | 0 | |a On-Line coupled LC-GC |c by Konrad Grob |
264 | 1 | |a Heidelberg |b Hüthig |c 1991 | |
300 | |a XXVII, 462 S. |b zahlr. graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 0 | |a Chromatographic methods | |
500 | |a Literaturverz. S. 432 - 448 | ||
650 | 4 | |a Chromatographic analysis | |
650 | 4 | |a Gas chromatography | |
650 | 4 | |a Liquid chromatography | |
650 | 0 | 7 | |a Kopplung |g Analytische Chemie |0 (DE-588)4326657-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Gaschromatographie |0 (DE-588)4019330-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Flüssigkeitschromatographie |0 (DE-588)4017622-8 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Flüssigkeitschromatographie |0 (DE-588)4017622-8 |D s |
689 | 0 | 1 | |a Gaschromatographie |0 (DE-588)4019330-5 |D s |
689 | 0 | 2 | |a Kopplung |g Analytische Chemie |0 (DE-588)4326657-5 |D s |
689 | 0 | |5 DE-604 | |
856 | 4 | 2 | |m GBV Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=002650562&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-002650562 |
Datensatz im Suchindex
_version_ | 1804118458135216128 |
---|---|
adam_text | ON-LINE COUPLED LC-GC BY KONRAD GROB HUETHIG BUCH VERLAG HEIDELBERG
CONTENTS PREFACE V 1 INTRODUCTION 1 1.1 REASONS FOR COUPLING LC TO GC
.... 1 1.2 ADVANTAGES OF LC FOR SAMPLE PREPARATION 1 1.2.1 HIGH
SEPARATION EFFICIENCY 1 1.2.2 RAPID AND THOROUGH METHOD DEVELOPMENT 2
1.2.3 ACCURATE CUTS 2 1.2.4 IMPROVED SENSITIVITY 2 1.2.5 INTRODUCTION OF
MORE SAMPLE MATERIAL 3 1.2.6 USE OF INEXPENSIVE DETECTORS 3 1.3 WHY
ON-LINE COUPLING TO GC? 3 1.3.1 SIMPLIFIED SAMPLE PREPARATION 3 1.3.2
EASY AUTOMATION 4 1.3.3 COMPLETE TRANSFER 4 1.3.4 REDUCED LOAD ONTO LC
COLUMN .... 4 1.3.5 ACCURATE QUANTITATIVE ANALYSIS 5 1.3.6 MORE
COMPETITIVE GC 6 1.4 LIMITATIONS OF COUPLED LC-GC 6 1.4.1 SOLUTES SUITED
FOR GC 6 1.4.2 PREDOMINANCE OF NORMAL PHASE LC . . 7 1.4.3 SPECIALIZED
LC TECHNIQUES 7 1.4.4 DERIVATIZATION BETWEEN LC AND GC? . 7 1.4.5 SOLUTE
DERIVATIZATION PRIOR TO LC PRE-SEPARATION 8 1.4.6 REPEATED USE OF
CLEAN-UP COLUMNS . 8 1.4.7 LIMITED CAPACITY OF LC COLUMNS .... 8 1.5
HISTORIE BACKGROUND 9 1.5.1 PARTIAL TRANSFER OF LC FRACTIONS 9 1.5.2
LARGE SAMPLE VOLUMES IN GC 9 1.5.3 RETENTION GAPS 10 X CONTENTS 1.5.4
LC-GC: COMPLETE TRANSFER BY THE RETENTION GAP TECHNIQUE 10 1.5.5
CAPILLARY LC FOR LC-GC 11 1.5.6 PARTIALLY CONCURRENT SOLVENT EVAPORATION
11 1.5.7 CONCURRENT SOLVENT EVAPORATION 12 1.5.8 LOOP-TYPE INTERFACE 12
1.5.9 REVERSED PHASE LC 13 1.5.10 THE FIRST FULLY AUTOMATED LC-GC
INSTRUMENT 13 2 LC-GC WITH PARTIAL TRANSFER THROUGH VAPORIZING INJECTORS
14 2.1 CONVENTIONAL VAPORIZING INJECTION ... 14 2.1.1 LIMITED ACCURACY
14 2.1.2 FILTER FOR INVOLATILE MATERIALS 14 2.1.3 SIMPLICITY OF THE
TECHNIQUE 15 2.1.4 LIMITED SUITABILITY FOR REVERSED PHASE ELUENTS 15
2.1.5 PROBLEMS INVOLVED IN SPLITLESS INJECTION OF WATER-CONTAINING
ELUENTS 15 2.1.6 LIMITED INJECTION VOLUME 16 2.1.7 RECONCENTRATION
EFFECTS IN SPLITLESS INJECTION 16 2.2 VERTICAL VERSUS HORIZONTAL
SPLITTING .. . 17 2.2.1 VERTICAL SPLITTING 17 2.2.2 HORIZONTAL SPLITTING
18 2.3 DESIGN OF THE INTERFACE 18 2.3.1 AUTOSAMPIER FOR VAPORIZING
INJECTION . 18 2.3.2 LC-GC INTERFACE 18 2.3.3 ISOTACHIC ELUENT SPLITTER
19 2.4 APPLICATIONS 20 2.4.1 ATRAZINE IN SORGHUM 20 2.4.2 HYDROCARBONS
FROM BIOMASS 21 2.4.3 HYDROCARBON GROUP-TYPE ANALYSIS ... 22 2.4.4
FOLPET IN HOPS 22 2.4.5 SOLVENT REFINED COAL 22 2.4.6 COAL LIQUIDS/SIZE
EXCLUSION CHROMATOGRAPHY 23 2.4.7 AMINES IN URINE/LIQUID MEMBRANE
CLEAN-UP 23 2.5 EVALUATION OF THE METHOD 24 2.5.1 LIMITED SENSITIVITY 24
2.5.2 MAXIMUM SELECTIVITY BY VERTICAL SPLITTING 25 2.5.3 MORE RELIABLE
QUANTITATION BY HORIZONTAL SPLITTING 25 CONTENTS XI 2.5.4 HORIZONTAL
SPLITTING FOR GROUP-TYPE ANALYSIS 25 2.5.5 SPLIT RATIO BY EFFLUENT
SPLITTER 26 2.6 PACKED CAPILLARY LC 26 2.6.1 DEMANDING TRANSFER 27 2.6.2
NO IMPROVEMENT IN SENSITIVITY 27 3 CONCEPTS FOR TOTAL TRANSFER OF LC
FRACTIONS 28 3.1 RETENTION GAP TECHNIQUE 29 3.1.1 RETENTION OF LIQUID 30
3.1.2 RECONCENTRATION OF VOLATILES BY SOLVENT EFFECTS 31 3.1.3
RECONCENTRATION OF HIGH BOILERS BY RETENTION GAP 32 3.1.4 RESTRICTED
TRANSFER VOLUME 34 3.2 CONCURRENT ELUENT EVAPORATION 34 3.2.1 NO
FLOODING EFFECT 35 3.2.2 RUINED SOLVENT TRAPPING 35 3.2.3 RESTRICTED
APPLICATION OF CONCURRENT SOLVENT EVAPORATION 37 3.2.4 COMPARISON OF THE
TWO BASIC CONCEPTS 38 3.3 PARTIALLY CONCURRENT SOLVENT EVAPORATION 38
3.3.1 SOPHISTICATED RETENTION GAP TECHNIQUE 38 3.3.2 ADJUSTED FLOW RATES
39 3.3.3 ACTIVE SOLVENT TRAPPING 40 3.4 CONCURRENT ELUENT EVAPORATION
WITH CO-SOLVENT TRAPPING 41 3.4.1 CONDENSED CO-SOLVENT AHEAD OF
EVAPORATING SOLVENT MIXTURE 41 3.4.2 TRANSFER BY LOOP-TYPE INTERFACE 41
3.4.3 CO-SOLVENT CONCENTRATION 42 3.4.4 CRITICAL SOLVENT EVAPORATION
TEMPERATURE 42 3.4.5 CO-SOLVENT TRAPPING FOR REVERSED PHASE ELUENTS 43
3.5 THE ON-COLUMN INTERFACE 43 3.5.1 TRANSFER ANALOGOUS TO ON-COLUMN
INJECTION 43 3.5.2 CARRIER GAS DILUTING SAMPLE VAPORS . . 44 3.5.3
DANGER OF BACKFLOW 45 3.5.4 LIMITED SUITABILITY FOR CONCURRENT ELUENT
EVAPORATION 45 CONTENTS 3.6 LOOP-TYPE INTERFACE 45 3.6.1 VAPOR PRESSURE
STOPPING ELUENT FLOW 46 3.6.2 SIMPLE ADJUSTMENT OF CONDITIONS ... 46
3.6.3 EFFICIENT DISCHARGE OF VAPORS 47 3.6.4 LIMITED USEFULNESS FOR
RETENTION GAP TECHNIQUE 47 3.6.5 CO-SOLVENT TRAPPING 47 3.7 COLUMN
TEMPERATURE DURING TRANSFER . 49 3.8 TRANSFER OF WATER-CONTAINING
ELUENTS . 49 3.8.1 POSITION OF REVERSED PHASE LC IN COUPLED LC-GC 49
3.8.2 PROBLEMS WITH WATER 50 3.8.3 PRINCIPAL ROUTES FOR LC-GC OF
WATER-CONTAINING ELUENTS 52 3.8.4 CONTINUOUS ON-LINE LIQUID-LIQUID
EXTRACTION 52 3.8.5 EXTRACTION INTO WALL-COATED CAPILLARY 55 3.8.6
EXTRACTION INTO PACKED BEDS? 57 3.8.7 REMOVAL OF REVERSED PHASE ELUENT .
. 59 3.8.8 DIRECT TRANSFER 61 4 LC-GC INTERFACES FOR COMPLETE TRANSFER
63 4.1 ON-COLUMN INTERFACE 63 4.1.1 KEY CHARACTERISTICS 64 4.1.2
REMOVABLE TRANSFER LINE 64 4.1.3 4-PORT SWITCHING VALVE 65 4.1.3.1
BACKFLUSH OF TRANSFER LINE 65 4.1.3.2 MEMORY EFFECTS FROM THE TRANSFER
LINE? 68 4.1.3.3 ROTATING SWITCHING VALVE 69 4.1.3.4 CONNECTIONS TO THE
VALVE 70 4.1.3.5 INJECTOR SEAL 73 4.1.4 T-PIECE INSTEAD OF ON-COLUMN
INJECTOR 74 4.1.5 AUTOMATION BY ON-COLUMN AUTOSAMPIER 75 4.2 LOOP-TYPE
INTERFACE 77 4.2.1 FUNDAMENTAL DIFFERENCES BETWEEN INTERFACES 77 4.2.1.1
COMPARISON FOR CONCURRENT ELUENT EVAPORATION 77 4.2.2 DECOUPLING THE
ELUENT FROM THE LC SYSTEM 78 4.2.3 SAMPLE LOOP 79 4.2.3.1 INTERNAL
VOLUME CORRESPONDING TO FRACTION VOLUME 79 CONTENTS XIII 4.2.3.2
INTERNAL DIAMETER OF THE LOOP 79 4.2.3.3 COMPLETE TRANSFER? 80 4.2.3.4
STEEL TUBING OF 0.5-1 MM I.D 81 4.2.3.5 PARTIAL FILLING OF A LARGE LOOP?
81 4.2.4 SAMPLE VALVE WITH ADDITIONAL INJECTION LOOP 81 4.2.4.1 PURPOSES
OF USING AN INJECTION LOOP 82 4.2.4.2 TRANSFER OF SMALL VOLUMES? 83
4.2.5 BACKFLUSH OF THE SAMPLE VALVE 84 4.2.5.1 SOLVENT RESIDUES IN THE
SAMPLE VALVE 84 4.2.5.2 GAS FLOW PATHS 84 4.2.5.3 CARRIER GAS VALVE 85
4.2.5.4 WHEN TO SWITCH THE CARRIER GAS VALVE 85 4.2.5.5 PURGE FLOW RATE
85 4.2.6 T-PIECE 86 4.2.6.1 CARRIER GAS LINE EXTENDING INTO COLUMN INLET
86 4.2.6.2 PRESS-FIT T-PIECE 87 4.2.6.3 T-PIECE INSIDE OR OUTSIDE THE GC
OVEN? 88 4.2.7 INTERNAL VOLUME OF CARRIER GAS LINE . . 91 4.2.8
INTERFACE FOR MULTIPLE TRANSFER 93 4.3 DELAY TIMES DUE TO INTERNAL
VOLUMES OF THE INTERFACE LINES 93 4.3.1 DELAY TIMES 94 4.3.1.1 ON-COLUMN
INTERFACE 94 4.3.1.2 LOOP-TYPE INTERFACE 94 4.3.2 DETERMINATION OF
INTERNAL VOLUMES ... 94 4.3.2.1 CALCULATED VOLUMES 95 4.3.2.2
EXPERIMENTAL DETERMINATION INTRO- DUCING LIQUID 95 4.3.3 DIRECT
DETERMINATION OF DELAY TIMES . 96 4.4 PRESSURE INCREASE DURING ELUENT
INTRODUCTION 97 4.4.1 ACCELERATED DISCHARGE BY FLOW- REGULATED GAS
SUPPLY 98 4.4.1.1 CONCURRENT EVAPORATION SAMPLE PLUG BLOCKING GAS FLOW
.... 98 4.4.1.2 RETENTION GAP TECHNIQUES 98 4.4.2 INDICATION FOR END OF
TRANSFER 99 4.4.2.1 FUNCTIONS ACTUATED BY PRESSURE DROP 99 4.4.3
FLOW-REGULATED CHROMATOGRAPHY ... 99 4.4.4 PNEUMATIC SYSTEM 100 4.4.4.1
PRESSURE REGULATOR BEHIND FLOW REGULATOR 100 4.4.4.2 SPEED OF PRESSURE
CHANGE 100 4.4.5 DESIGN OF THE FLOW REGULATOR 101 XIV CONTENTS 4.4.5.1
THE LAMINAR ELEMENT 102 4.4.5.2 INTERNAL PRESSURE REGULATOR 102 4.4.5.3
TURNING THE KNOB OF THE REGULATOR... 102 4.4.5.4 READOUT OF NUMBER OF
TURNS 103 4.4.5.5 PLASTIC MEMBRANE 103 4.4.6 DETERMINATION OF THE
REGULATED FLOW RATE 103 4.4.6.1 DEPENDENCE OF THE FLOW RATE ON GAS
VISCOSITY 103 4.4.6.2 DEPENDENCE OF THE FLOW RATE ON SUPPLIED PRESSURE
103 4.4.6.3 CALCULATION OF FLOW RATES 103 4.4.6.4 DIAGRAMS FOR READING
FLOW RATES ... 104 4.4.7 SELECTION OF THE LAMINAR ELEMENT ... 105
4.4.7.1 THETWO MAIN ARGUMENTS 105 4.4.7.2 PRESSURE DROP WITHIN THE
REGULATOR . . 106 4.4.7.3 EFFECT OF INSUFFICIENT PRESSURE CHANGES 106
4.4.7.4 EASY CASE INCREASE OF INLET PRESSURE BY AT LEAST 1 BAR 107
4.4.7.5 MORE DIFFICULT CASE SMALL PRESSURE INCREASE 108 4.4.7.6 LAMINAR
ELEMENT A-60/HYDROGEN ... . 109 4.4.7.7 LAMINAR ELEMENT A-60/HELIUM 110
4.4.8 PRESSURE INCREASE THROUGH RESISTANCE IN GAS LINE 110 4.4.8.1 GAS
FLOW RATE 111 4.4.8.2 LIMITING CARRIER GAS FLOW RATE 111 4.4.9 CLOSURE
OF THE PURGE EXIT DURING TRANSFER? 112 4.4.9.1 EFFECT OF PRESSURE
INCREASE 112 4.4.9.2 CLOSURE TO RENDER PURGE FLOW RATE LESS CRITICAL 113
4.5 PASSAGE THROUGH VAPORIZER? 113 4.5.1 NO EFFECT ON FLOODED ZONES 113
4.5.2 AVOIDANCE OF SHOOTING LIQUID 114 4.5.3 LEACHING OF THE CAPILLARY
SURFACE ... 114 4.5.4 TEMPERATURE OF THE VAPORIZER 114 5 RELEASE OF
SOLVENT VAPORS 116 5.1 REASONS FOR USING SOLVENT VAPOR EXITS 116 5.1.1
PROTECTION OF GC DETECTORS 116 5.1.1.1 FLAME LONIZATION DETECTOR (FID)
116 5.1.1.2 ELECTRON CAPTURE DETECTOR (ECD) 119 5.1.1.3 MASS
SPECTROMETERS 120 5.1.1.4 NITROGEN PHOSPHOROUS DETECTORS ... . 120
CONTENTS XV 5.1.2 ACCELERATED DISCHARGE OF SOLVENT VAPORS 120 5.2
CONCEPTS OF SOLUTE RETENTION 121 5.2.1 TEMPORARY INCREASE OF RETENTION
POWER 122 5.2.2 SOLVENT EFFECTS 122 5.2.3 RETENTION BY STATIONARY PHASE
FILM . 123 5.2.4 HEATED INLET 124 5.3 VAPOR EXITS FOR RETENTION GAP
TECHNIQUES 124 5.3.1 SOLUTE RETENTION BY SOLVENT TRAPPING 124 5.3.2
VAPOR EXIT AT END OF THE UNCOATED PRE-COLUMN? 125 5.3.3 VAPOR EXIT AFTER
RETAINING PRE-COLUMN 125 5.3.4 DETERMINATION OF THE END OF ELUENT
EVAPORATION 125 5.3.4.1 ELUENT LEAVING VAPOR EXIT 125 5.3.4.2 DETECTION
OF ELUENT IN THE EFFLUENT OF THE VAPOR EXIT 127 5.3.4.3 DROP OF INLET
PRESSURE 127 5.3.5 LENGTH OF THE RETAINING PRE-COLUMN . 128 5.3.6
ACCELERATION OF VAPOR DISCHARGE .... 129 5.3.6.1 DESIRABLE EVAPORATION
RATE 130 5.3.6.2 PRE-COLUMNS OF 0.53 MM I.D 130 5.3.6.3 LONG SEPARATION
COLUMNS 131 5.3.6.4 ACCURATE CLOSURE OF VAPOR EXIT 131 5.3.7 WITH OR
WITHOUT RETAINING PRE-COLUMN? 131 5.4 CONCURRENT ELUENT EVAPORATION 132
5.4.1 VOLATILE COMPONENTS SPREADING INTO SEPARATION COLUMN 132 5.4.2
INITIAL BAND LENGTHS 133 5.4.3 THE RETAINING PRE-COLUMN 133 5.4.4 SOME
EXPERIMENTAL RESULTS 135 5.4.4.1 EFFECT OF A RETAINING PRE-COLUMN ...
135 5.4.4.2 RECOGNITION OF LOSSES/ACETONITRILE ... 136 5.4.5 RETENTION
POWER WITHIN THE RETAINING PRE-COLUMN 137 5.4.6 CLOSURE OF THE VAPOR
EXIT 138 5.4.7 ACCELERATION OF ELUENT EVAPORATION ..139 5.4.7.1 WIDE
BORE PRE-COLUMNS VERSUS STRANG PRESSURE INCREASE 140 5.4.7.2 FLOW RATES
THROUGH PRE-COLUMNS ... 140 5.5 CONCURRENT ELUENT EVAPORATION WITH
CO-SOLVENT TRAPPING 141 5.5.1 CLOSURE OF THE EXIT BEFORE OR AFTER
CO-SOLVENT EVAPORATION? 142 XVI CONTENTS 5.6 CONSTRUCTION OF THE VAPOR
OUTLET .... 142 5.6.1 SPLITTING VERSUS FLOW REVERSAL 142 5.6.2 COLUMN
EFFLUENT SPLITTER 143 5.6.3 LOW DEAD VOLUME T-PIECE 143 5.6.4 PURGED
BUTT CONNECTOR 143 5.6.5 PRESS-FIT T-PIECE 144 5.6.6 THE VAPOR OUTLET
LINE 145 5.7 SOLVENT SPLIT RATIO 145 5.7.1 NORMAL VAPOR FLOW RATES
INTO GC DETECTORS 145 5.7.2 SPLIT RATIO FOR THE SOLVENT VAPORS ... 146
5.7.3 COLUMN EFFLUENT SPLITTER 146 5.8 CLOSURE OF THE VAPOR EXIT 147
5.8.1 COMPLETE OR PARTIAL CLOSURE? 147 5.8.2 COMPLETE CLOSURE 147 5.8.3
LEAVING SMALL PURGE FLOW 149 5.8.4 AUTOMATIC CLOSURE OF THE EXIT 150
5.8.5 PURGING SOLVENT VAPOR EXIT LINE INWARDS? 150 6 LC SUITED FOR LC-GC
15 2 6.1 LC EQUIPMENT 152 6.1.1 LC PUMP 152 6.1.2 LC DETECTORS 154
6.1.2.1 PRESSURE-RESISTANT DETECTOR CELL 154 6.1.2.2 LOW INTERNAL
VOLUMES 156 6.1.2.3 SUITABILITY FOR PACKED CAPILLARY LC . . . 156 6.2
SIZE OF LC COLUMNS SUITED FOR LC-GC 156 6.2.1 COLUMN LENGTH 156 6.2.2
COLUMN DIAMETER 157 6.2.2.1 SIZE OF THE TRANSFERRED FRACTION 157 6.2.2.2
INJECTION VOLUME 158 6.2.2.3 SAMPLE LOAD 158 6.2.3 MAXIMUM SAMPLE VOLUME
159 6.2.3.1 CALCULATED MAXIMUM INJECTION VOLUMES 159 6.2.3.2 ELUENT
STRENGTH OF SAMPLE 160 6.2.3.3 OTHER IMPORTANT PARAMETERS 160 6.3 COLUMN
PACKINGS 161 6.3.1 SILICA COLUMNS 161 6.3.2 HUMIDITY OF SOLVENTS AND
SAMPLES ..162 6.3.3 BUFFERED SILICA 162 6.3.4 DERIVATIZED SILICA 165
6.3.5 SIZE EXCIUSION CHROMATOGRAPHY (SEC) 166 6.4 RECONDITIONING OF LC
COLUMNS 168 6.4.1 STABLE COLUMN PROPERTIES 168 6.4.2 BACKFLUSHING THE LC
COLUMN 169 CONTENTS XVII 6.4.3 BACKFLUSH VALVE 170 6.5 ELUENTS FREE OF
PEROXIDES 172 6.5.1 PEROXIDE CONCENTRATIONS 172 6.5.2 STABILIZED ETHER?
173 6.5.3 REMOVAL OF PEROXIDES 173 6.5.4 MTBE AS REPLACEMENT 174 6.6
TRACE ENRICHMENT BY LC 174 6.6.1 SOLID PHASE EXTRACTION 174 6.6.2
PRE-COLUMN ENRICHMENT FOLLOWED BY LC SEPARATION 175 6.6.3 ON-COLUMN
TRACE ENRICHMENT 175 6.6.4 ENRICHMENT FOLLOWED BY GC 176 6.6.5 SAMPLE
SOLVENT CORRESPONDING TO WEAK ELUENT 176 6.6.6 DILUTION WITH WEAK ELUENT
176 6.6.7 ON-LINE DILUTION 178 6.7 POST-COLUMNS 179 6.7.1 POST-COLUMN
ENRICHMENT 179 6.7.2 ELUENT EXCHANGE OR PHASE SWITCHING 179 6.7.3
ON-LINE DERIVATIZATION 179 6.8 LC COLUMN SWITCHING TECHNIQUES ... 180
6.8.1 GENERAL TECHNIQUES 180 6.8.2 APPLICATIONS OF MULTIDIMENSIONAL LC .
180 6.9 POST-LC DERIVATIZATION 181 6.9.1 DERIVATIZATION BEFORE OR AFTER
LC? ... 181 6.9.2 POST-COLUMN DERIVATIZATION IN LC ... 181 6.9.3 GC
ON-COLUMN DERIVATIZATION 182 7 RETENTION GAP TECHNIQUES 183 7.1 CONCEPTS
183 7.2 RANGE OF APPLICATIONS 184 7.2.1 SHARP PEAKS AT LOW ELUTION
TEMPERATURES 184 7.2.2 FLEXIBILITY IN SELECTING LC FRACTIONS . . 185
7.2.3 RESTRICTION TO SMALL LC FRACTIONS ... 185 7.2.4 SMALL BORE LC
COLUMNS 185 7.2.5 ELUENT GRADIENTS 186 7.2.6 ON-COLUMN INTERFACE 186
7.2.7 WHEN NOT TO USE RETENTION GAP TECHNIQUES 186 7.3 SURFACE
PROPERTIES OF UNCOATED PRE-COLUMNS 186 7.3.1 WETTABILITY 186 7.3.1.1
CAPACITY OF 3-6 |IL/M PRE-COLUMN ... 187 7.3.1.2 SURFACE TENSIONS OF
SOLVENTS 188 7.3.1.3 CRITICAL SURFACE ENERGIES 189 7.3.1.4 NO
WETTABILITY BY WATER 190 XVIII CONTENTS 7.3.1.5 WETTABILITY BY
WATER-CONTAINING ELUENTS 190 7.3.1.6 SEQUENCE OF SOLVENT EVAPORATION ...
192 7.3.1.7 WATER/1-PROPANOL AS AN EXAMPLE . . . . 194 7.3.1.8 HIGH
BOILING ORGANIC SOLVENTS 197 7.3.1.9 SOME EXPERIMENTAL RESULTS 198 7.3.2
LOW RETENTION POWER WITHIN THE UNCOATED PRE-COLUMN 199 7.3.3 STABILITY
OF THE DEACTIVATION 200 7.3.3.1 WATER RUINING DEACTIVATION 200 7.3.3.2
DEACTIVATION BY WATER 200 7.3.3.3 WATER-RESISTANCE OF VARIOUS SURFACES
201 7.3.3.4 SOME TEST CHROMATOGRAMS 203 7.3.3.5 CONCLUSIONS 204 7.3.4
CLEANING OF CONTAMINATED PRE- COLUMNS 205 7.3.4.1 SYMPTOMS OF
CONTAMINATION 205 7.3.4.2 CLEANING PROCEDURE 205 7.3.4.3 BY-PRODUCTS
ACCUMULATED AT INLET OF COATED COLUMN 206 7.4 SIZE OF THE UNCOATED
PRE-COLUMN . . . 207 7.4.1 FACTORS INFLUENCING THE LENGTH OF FLOODED
ZONES 207 7.4.1.1 DEPENDENCE ON CAPILLARY DIAMETER .. 207 7.4.1.2
DEPENDENCE ON GAS VELOCITY 207 7.4.1.3 DEPENDENCE ON COLUMN TEMPERATURE
209 7.4.2 RECOMMENDED ASSUMPTIONS 209 7.4.3 EFFECTS OF OVERLOADING THE
UNCOATED PRE-COLUMN 210 7.4.4 WIDE BORE PRE-COLUMNS 212 7.5 MAXIMUM SIZE
OF THE UNCOATED PRE-COLUMN 213 7.5.1 RECONCENTRATION BY PHASE RATIO
FOCUSING 213 7.5.2 COLUMN-INTERNAL COLD TRAPPING 214 7.6 GC OVEN
TEMPERATURE DURING ELUENT EVAPORATION 217 7.6.1 ELUENT VAPORS REPLACING
CARRIER GAS . 217 7.6.2 CORRECTION OF BOILING POINTS FOR WHICH GAS
PRESSURE? 218 7.6.3 PRESSURE-REGULATED GAS SUPPLY .... 221 7.6.3.1
TRANSFER VERSUS ELUENT EVAPORATION TEMPERATURE 221 7.6.3.2 CORRECTED
BOILING POINTS 222 7.6.3.3 SOLVENT MIXTURES 223 7.6.3.4 AZEOTROPIC
SOLVENT MIXTURES 224 CONTENTS XIX 7.6.4 FLOW-REGULATED GAS SUPPLY 225
7.6.4.1 INDICATION OF ELUENT VAPOR PRESSURE . . 225 7.6.4.2 ACCELERATED
DISCHARGE OF ELUENT VAPORS 226 7.6.4.3 INCREASE OF COLUMN TEMPERATURE
DURING ELUENT TRANSFER 227 7.6.4.4 SLOW REACTION OF FLOW REGULATORS ...
228 7.6.5 THE DISASTER AT EXCESSIVELY HIGH TRANSFER TEMPERATURE 229
7.6.5.1 CONTAMINATION OF ON-COLUMN INJECTOR AND GAS SUPPLY SYSTEM 229
7.6.5.2 REMOVAL OF THE SOLVENT 230 7.6.5.3 REMOVAL OF SOLUTE MATERIAL
230 7.7 TRANSFER FLOW RATE 231 7.7.1 MINIMUM TRANSFER FLOW RATE 231
7.7.2 MAXIMUM TRANSFER FLOW RATE 232 7.7.2.1 DEPENDENCE ON CARRIER GAS
FLOW RATE 232 7.7.2.2 INFLUENCE BY THE TRANSFER TEMPERATURE 233 7.8 GC
COLUMNS SUITABLE FOR LC-GC BY RETENTION GAP TECHNIQUES 234 7.8.1 SHORT
COLUMNS? 234 7.8.2 INTERNAL COLUMN DIAMETER 235 7.8.3 FILM THICKNESS 236
7.8.3.1 RECONCENTRATION OF BANDS BROADENED IN SPACE 236 7.8.3.2
RETENTION POWER IN THE PRE-COLUMN . 236 7.8.3.3 REQUIRED FILM THICKNESS
IN THE SEPARATION COLUMN 237 7.8.3.4 PHESIL OR MESIL ? 237 7.8.3.5
RECOMMENDED MINIMUM FILM THICKNESSES 238 7.8.3.6 WIDER BORE PRE-COLUMNS
238 7.8.4 WELL IMMOBILIZED STATIONARY PHASE FILMS 239 7.9 SPEED OF
TEMPERATURE INCREASE DURING GC ANALYSIS 239 7.9.1 DEFICIENCY OF THE
PHASE RATIO FOCUSING CONCEPT 240 7.9.2 COLUMN-INTERNAL COLD TRAPPING 240
7.9.3 PASSAGE THROUGH PRE-COLUMN AT LOW TEMPERATURE 241 7.10 CHOICE OF
CARRIER GAS 243 7.10.1 CARRIER GAS PROPERTIES 243 7.10.2 ADVANTAGES OF
HIGHER INLET PRESSURES WITH HELIUM 244 XX CONTENTS 7.11 PARTIALLY
CONCURRENT ELUENT EVAPORATION 245 7.11.1 ON-COLUMN INTERFACE 246 7.11.2
PROPORTION OF CONCURRENTLY EVAPORATING ELUENT 247 7.11.3 EARLY VAPOR
EXIT? 247 7.11.3.1 NO VAPOR EXIT FOR PACKED CAPILLARY COLUMN LC 247
7.11.3.2 WITH VAPOR EXIT FOR 2 MM I.D. LC COLUMNS 248 7.11.4 TRANSFER
WITHOUT VAPOR EXIT 248 7.11.4.1 DETERMINATION OF THE RATE OF SOLVENT
EVAPORATION 248 7.11.4.2 SOLVENT MIXTURES 252 7.11.4.3 COMMON ELUENT
EVAPORATION RATES . . 253 7.11.4.4 CAPACITY OF THE UNCOATED PRE-COLUMN
254 7.11.5 TRANSFER WITH EARLY VAPOR EXIT 255 7.11.5.1 DETERMINATION OF
THE EVAPORATION RATE 255 7.11.5.2 STANDARD PRE-COLUMN SYSTEM AND SET OF
CONDITIONS 256 7.11.5.3 EVAPORATION RATES OF IMPORTANT ELUENTS 257
7.11.5.4 DEPENDENCE ON TEMPERATURE 257 7.11.5.5 DEPENDENCE ON INLET
PRESSURE 259 7.11.5.6 DEPENDENCE ON CARRIER GAS 260 7.11.5.7 SELECTION
OF THE SEPARATION COLUMN . 260 7.11.5.8 BORE OF THE RETAINING PRE-COLUMN
... 261 7.11.5.9 RETAINING PRE-COLUMN? 262 7.12 SIMPLIFIED SHORT
INSTRUCTIONS 262 7.12.1 APPLICATION OF THE RETENTION GAP TECHNIQUES 262
7.12.2 CONVENTIONAL RETENTION GAPTECH- NIQUE, NORMAL PHASE LC 263 7.12.3
PARTIALLY CONCURRENT ELUENT EVAPORA- TION/NORMAL PHASE LC 269 7.12.4
WATER-CONTAINING ELUENTS 271 7.12.4.1 WATER EVAPORATION LEAVING ORGANIC
SOLVENT BEHIND 271 7.12.4.2 SMALL FRACTION VOLUMES 272 8 APPLICATIONS
INVOLVING THE RETEN- TION GAP TECHNIQUE 273 8.1 IDENTIFICATION OF A
COMPONENT: DYESTUFF IN TOOTHPASTE 273 8.1.1 PURPOSE OF THE ANALYSIS 273
8.1.2 LC PRE-SEPARATION 275 8.1.3 GC ANALYSIS 275 CONTENTS XXI 8.1.4
DISCUSSION 275 8.2 SEARCH FOR A NEEDLE IN A HAYSTACK: DIETHYLSTILBESTROL
IN URINE 276 8.2.1 PURPOSE OF THE ANALYSIS 277 8.2.2 EXTRACTION AND
DERIVATIZATION 277 8.2.3 LC PRE-SEPARATION 278 8.2.4 LC-GC TRANSFER 278
8.2.5 GC ANALYSIS 279 8.2.6 PROCEDURE 280 8.2.7 RESULTS INVOLVING FID
282 8.2.8 RESULTS INVOLVING ECD 283 8.2.9 DISCUSSION 284 8.3
TWO-DIMENSIONAL CHROMATOGRAPHY OF COMPLEX HYDROCARBON MIXTURES 284 8.3.1
LC PRE-SEPARATION 284 8.3.2 LC-GC INTERFACE 285 8.3.3 TRANSFER AND GC
SEPARATION 286 8.3.4 RESULTS 287 8.3.5 DISCUSSION 288 8.4 CAPILLARY
LC-GC FOR DETERMINING PCBS IN COAL TAR 289 8.4.1 LC PRE-SEPARATION 290
8.4.2 TRANSFER AND GC SEPARATION 290 8.4.3 RESULTS 290 8.4.4 DISCUSSION
292 8.4.5 APPLICATION FOR ANALYZING CHLORINATED BENZENES IN FUEL OIL 293
8.5 GROUP-TYPE ANALYSIS OF GASOLINE .... 293 8.5.1 LC PRE-SEPARATION 293
8.5.2 TRANSFER AND GC SEPARATION 294 8.5.3 DISCUSSION 296 8.6 CAPILLARY
LC-GC FOR THE ANALYSIS OF GASOLINE 297 8.6.1 LC-PRE-SEPARATION 297 8.6.2
TRANSFER AND GC ANALYSIS 298 8.6.3 DISCUSSION 299 8.7 PCBS IN
SEDIMENT/PARTIALLY CONCURRENT ELUENT EVAPORATION 300 8.7.1 LC-SAMPLE
CLEAN-UP 300 8.7.2 TRANSFER AND GC ANALYSIS 301 8.7.3 RESULTS 302 8.7.4
DISCUSSION 302 8.8 DETECTION OF FOOD IRRADIATION/EARLY VAPOR EXIT 303
8.8.1 LC PRE-SEPARATION 304 8.8.2 TRANSFER TO GC 305 XXII CONTENTS 8.8.3
GC ANALYSIS 307 8.8.4 DISCUSSION 307 8.9 LC-GC FOR CHARACTERIZATION OF
CITRUS ESSENTIAL OILS 308 8.9.1 LC FRACTIONATION 308 8.9.2 TRANSFER AND
GC ANALYSIS 309 8.9.3 DISCUSSION 310 8.10 DIAZEPAM BY REVERSED PHASE
CAPILLARY LC-GC 310 8.10.1 LC SAMPLE CLEAN-UP 310 8.10.2 TRANSFER AND GC
ANALYSIS 310 8.10.3 DISCUSSION 311 8.11 N-SERVE IN COM EXTRACT/REVERSED
PHASE CAPILLARY LC-GC 311 8.11.1 LC-SAMPLE CLEAN-UP 311 8.11.2 TRANSFER
AND GC ANALYSIS 312 8.12 NATURAL OR SYNTHETIC FLAVORS? LACTONES 313
8.12.1 LC-PRE-SEPARATION 314 8.12.2 TRANSFER TO GC 314 8.12.3 GC
SEPARATION 314 9 TRANSFER BY CONCURRENT ELUENT EVAPORATION 316 9.1
CONCEPT 316 9.1.1 LOSS OF SOLVENT TRAPPING 316 9.1.2 RANGE OF
APPLICATION 316 9.2 TRANSFER THROUGH LOOP-TYPE INTERFACE 316 9.2.1
PRINCIPLE 317 9.2.2 DESIGN OF THE LOOP-TYPE INTERFACE ... 317 9.2.3
ON-COLUMN VERSUS LOOP-TYPE INTERFACE, AN EXAMPLE 318 9.2.4 ADVANTAGES OF
THE LOOP-TYPE INTERFACE 319 9.2.5 TRANSFER TEMPERATURE AS AN ARGUMENT
FOR USING THE ON-COLUMN INTERFACE? . 320 9.3 MINIMUM COLUMN TEMPERATURE
DURING TRANSFER 321 9.3.1 EXPERIMENTAL DETERMINATION OF MINIMUM
TEMPERATURES 322 9.3.2 COOLING BY SOLVENT EVAPORATION 323 9.3.3
OSCILLATING MOVEMENT/DELAYED EVAPORATION 325 9.3.4 REQUIRED OVEN
TEMPERATURE VERSUS RATE OF ELUENT EVAPORATION 326 9.3.5 STANDARD
CONDITIONS 326 9.3.6 VOLATILE ELUENTS 327 CONTENTS XXIII 9.3.7 NORMAL
PHASE ELUENTS OF INTERMEDIATE VOLATILITIES 328 9.3.8 REVERSED PHASE
ELUENTS 330 9.3.9 SYSTEMS WITH EARLY VAPOR EXIT 330 9.4 THE PRE-COLUMN
SYSTEM 331 9.4.1 THE UNCOATED PRE-COLUMN 331 9.4.1.1 ARGUMENTS
CONCERNING THE LENGTH .. 332 9.4.1.2 WIDE BORE UNCOATED PRE-COLUMNS ..
332 9.4.1.3 RECOMMENDED LENGTHS 333 9.4.2 THE RETAINING PRE-COLUMN 333
9.4.3 RECOGNITION OF FLOODING INTO COATED COLUMN 334 9.4.3.1 PARTIAL
FLOODING OF THE COLUMN 334 9.4.3.2 SHAPE OF THE INITIAL BAND 336 9.4.3.3
RESULTING PEAK DEFORMATION 337 9.4.3.4 EFFECTS WITH AN EARLY SOLVENT
VAPOR EXIT 338 9.4.4 DEACTIVATION OF THE UNCOATED PRE- COLUMN 339 9.5
BROADENING OF EARLY ELUTED PEAKS . . . 339 9.5.1 INITIAL BAND WIDTHS 339
9.5.2 RECONCENTRATION BY COLD TRAPPING . . 341 9.5.3 RECONCENTRATION BY
PHASE SOAKING . . 342 9.5.4 EXPERIMENTALLY OBSERVED PEAK BROAD-
ENING/ON-COLUMN INTERFACE 343 9.5.5 EXPERIMENTAL RESULTS/LOOP-TYPE
INTER- FACE 346 9.5.5.1 FRACTIONS OF 500 L VOLUME 346 9.5.5.2 TRANSFER
VOLUME OF 4ML 347 9.5.5.3 EXTREMELY LARGE FRACTION: 20 ML 348 9.5.6
MINIMUM ELUTION TEMPERATURE REQUIRED FOR CONCURRENT EVAPORATION . 349
9.6 REVERSED PHASE ELUENTS BY CONCUR- RENT ELUENT EVAPORATION? 350 9.6.1
HIGH TRANSFER TEMPERATURES AND LARGE VAPOR VOLUMES 350 9.6.2 FOR HIGH
ELUTION TEMPERATURES ONLY . . 350 9.6.3 WETTABILITY OF THE PRE-COLUMN
350 9.6.3.1 SHOOTING ELUENT 351 9.6.3.2 CONSTRICTIONS TO STOP SHOOTING
LIQUID 351 9.6.4 ADSORPTIVE PRE-COLUMNS 352 9.7 CONCURRENT EVAPORATION
WITH CO- SOLVENT TRAPPING; THE CONCEPTS 352 9.7.1 EVAPORATION STEPS 352
9.7.2 REQUIREMENTS ON THE CO-SOLVENT .... 354 9.7.3 LENGTH OF THE
UNCOATED PRE-COLUMN . 356 9.7.4 VAPOR PRESSURES OF SOLVENT MIXTURES .
357 XXIV CONTENTS 9.7.4.1 PHASE DIAGRAMS 358 9.7.4.2 ELUENT EVAPORATION
= DISTILLATION? ... 359 9.7.4.3 AZEOTROPIC MIXTURES 361 9.7.5 PRESSURE
DROP WITHIN THE UNCOATED PRE-COLUMN 361 9.7.5.1 PRESSURE DEPENDENCE OF
CO- EVAPORATION 361 9.7.5.2 PRESSURE-CORRECTED PHASE DIAGRAM . . 361
9.7.5.3 EVAPORATION OF MAIN SOLVENT AT FRONT OF FLOODED ZONE 362 9.7.5.4
FUELL EVAPORATION OF THE CO-SOLVENT . . 362 9.7.6 CONCLUSIONS 363 9.8
CO-SOLVENT TRAPPING FOR REVERSED PHASE ELUENTS 363 9.8.1 BUTOXYETHANOL
AS CO-SOLVENT 363 9.8.2 INSTRUMENTAL ASPECTS 364 9.8.2.1 RESTRICTION
INSTEAD OF FLOW REGULATOR 364 9.8.2.2 T-PIECE INSIDE GC OVEN 364 9.8.2.3
NO RETAINING PRE-COLUMN 365 9.8.3 CLOSURE OF THE VAPOR EXIT 366 9.8.4
OPTIMIZATION OF CONDITIONS BY PATTERN OF THE PRESSURE DROP 367 9.8.4.1
TRANSFER NEAR LOWER TEMPERATURE LIMIT 369 9.8.4.2 TRANSFER NEAR UPPER
TEMPERATURE LIMIT 370 9.8.4.3 SPEED OF SOLVENT EVAPORATION 370 9.8.5
OPTIMIZATION OF CONDITIONS BY THE WIDTH OF THE CO-SOLVENT PEAK 371 9.8.6
TRANSFER OF A 1 ML VOLUME OF WATER . . 374 9.8.7 ADSORPTIVITY OF THE
FLOODED PRE-COLUMNS 375 9.8.8 SUMMARIZING GUIDELINES CO-SOLVENT TRAPPING
WITH BUTOXYETHANOL 375 9.9 SUMMARIZING GUIDELINES ON CONCURRENT ELUENT
EVAPORATION 376 9.9.1 WHEN TO USE CONCURRENT ELUENT EVAPORATION 376
9.9.2 SELECTION OF THE LC COLUMN 377 9.9.3 SELECTION OF THE GC COLUMN
377 9.9.4 LC CONDITIONS 378 9.9.5 GC CONDITIONS 379 9.9.6 TRANSFER OF
THE LC FRACTION TO GC ... 380 9.9.7 SETTING UP A METHOD 381 CONTENTS XXV
10 APPLICATIONS INVOLVING CONCURRENT ELUENT EVAPORATION 383 10.1 RAPID
ANALYSIS: RASPBERRY KETONE IN A RASPBERRY SAUCE 383 10.1.1 LC
PRE-SEPARATION 383 10.1.2 GC SEPARATION 384 10.1.3 LC-GC TRANSFER 385
10.1.4 DISCUSSION 385 10.2 DETERMINATION OF BROXATEROL IN PLASMA 386
10.2.1 LC CLEAN-UP 387 10.2.2 TRANSFER AND GC ANALYSIS 387 10.2.3
DISCUSSION 388 10.3 DETERMINATION OF LAEVOMOPROLOL IN PLASMA 389 10.3.1
SAMPLE PREPARATION 389 10.3.2 TRANSFER AND GC SEPARATION 389 10.4
DETERMINATION OF HEROIN METABOLITES IN URINE 390 10.4.1 LC SAMPLE
CLEAN-UP 390 10.4.2 TRANSFER AND GC ANALYSIS 391 10.4.3 DISCUSSION 391
10.5 PCB IN FAT MATRICES 391 10.5.1 LC-PRE-SEPARATION 392 10.5.2
TRANSFER AND GC SEPARATION 392 10.5.3 DISCUSSION 392 10.6 PHTHALATES IN
TRIGLYCERIDE MATRICES . . . 393 10.6.1 LC-PRE-SEPARATION 393 10.6.2
TRANSFER AND GC ANALYSIS 393 10.6.3 DISCUSSION 394 10.7 METHYLATED
DIBENZOTHIOPHENES IN ENVIRONMENTAL SAMPLES 395 10.7.1 LC PRE-SEPARATION
396 10.7.2 TRANSFER AND GC ANALYSIS 397 10.7.3 TRANSFER CONDITIONS 397
10.7.4 DISCUSSION 398 10.8 DETERMINATION OF DICAMBA IN TOBACCO 398
10.8.1 CONVENTIONAL SAMPLE CLEAN-UP 399 10.8.2 LC SAMPLE PREPARATION 399
10.8.3 TRANSFER 399 10.8.4 GC ANALYSIS 400 10.8.5 RESULTS 400 10.8.6
DISCUSSION 401 10.9 DETERMINATION OF HERBICIDE RESIDUES 401 10.9.1 LC
PRE-SEPARATION 402 10.9.2 TRANSFER BY A MODIFIED LOOP-TYPE INTERFACE 402
XXVI CONTENTS 10.9.3 GC SYSTEM 403 10.9.4 DISCUSSION 403 10.10
IDENTIFICATION OF TRIGLYCERIDES 404 10.10.1 LC SEPARATION 405 10.10.2
TRANSFER AND GC ANALYSIS 405 10.10.3 DISCUSSION 405 10.11 STEROLS AND
OTHER TRACE COMPONENTS IN OILS AND FATS 406 10.11.1 FATTY ALCOHOLS,
STEROLS AND THEIR ESTERS 406 10.11.2 CONCEPT OF THE LC-GC ANALYSIS 406
10.11.3 SAMPLE PREPARATION 407 10.11.4 LC PRE-SEPARATION 407 10.11.5
LC-GC TRANSFER AND GC ANALYSIS 408 10.11.6 RESULTS 411 10.11.7
DETERMINATION OF ERYTHRODIOL IN OLIVE OLLS 412 10.11.8 QUANTITATIVE
RESULTS 414 10.11.9 DISCUSSION 416 10.12 SAMPLE ENRICHMENT BY
LC/ATRAZINE IN WATER 417 10.12.1 ENRICHMENT AND CLEAN-UP BY LC 417
10.12.1.1 TRANSFER WITHIN REVERSED PHASE SYSTEM 417 10.12.1.2 MAXIMUM LC
RETENTION POWER 418 10.12.1.3 ENRICHMENT/DESORPTION 419 10.12.2 TRANSFER
AND GC ANALYSIS 420 10.12.3 DISCUSSION 422 11 SUPERCRITICAL FLUIDS FOR
SAMPLE PREPARATION? SFC/SFE-GC 423 11.1 TRANSFER OF GASES OR VAPORS? 423
11.2 SUPERCRITICAL EXTRACTION (SFE) 424 11.3 TRANSFER TO GC 424 11.3.1
TRANSFER VIA VAPORIZING INJECTOR 424 11.3.2 TRANSFER VIA ON-COLUMN
INTERFACE . . . 426 11.3.3 ENRICHMENT IN TRAP 427 11.3.4 AUTOMATED
EQUIPMENT 428 11.4 SOME ADDITIONAL REMARKS 428 11.4.1 SOME IMPORTANT
DIFFERENCES 428 11.4.2 TRANSFER THROUGH THE ON-COLUMN INTERFACE 428
11.4.3 TRANSFER FLOW RATE 429 11.4.4 EARLY VAPOR EXIT 429 11.4.5 LACKING
SOLVENT EFFECTS 430 11.4.6 DISTURBING SOLVENT PEAK 430 11.5 CONCLUSIONS
430 CONTENTS XXVII REFERENCES 432 APPENDIX: GLOSSARY OF IMPORTANT TERMS
USED IN THE TEXT 449 SUBJECT INDEX 454
|
any_adam_object | 1 |
author | Grob, Konrad |
author_facet | Grob, Konrad |
author_role | aut |
author_sort | Grob, Konrad |
author_variant | k g kg |
building | Verbundindex |
bvnumber | BV004261901 |
callnumber-first | Q - Science |
callnumber-label | QP519 |
callnumber-raw | QP519.9.C47 |
callnumber-search | QP519.9.C47 |
callnumber-sort | QP 3519.9 C47 |
callnumber-subject | QP - Physiology |
classification_rvk | VG 7500 |
classification_tum | CHE 232f CHE 230f CHE 234f |
ctrlnum | (OCoLC)24694713 (DE-599)BVBBV004261901 |
dewey-full | 543/.0894 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 543 - Analytical chemistry |
dewey-raw | 543/.0894 |
dewey-search | 543/.0894 |
dewey-sort | 3543 3894 |
dewey-tens | 540 - Chemistry and allied sciences |
discipline | Chemie / Pharmazie Chemie |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01808nam a2200481 c 4500</leader><controlfield tag="001">BV004261901</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20030129 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">910211s1991 d||| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3778518720</subfield><subfield code="9">3-7785-1872-0</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)24694713</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV004261901</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-703</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-91G</subfield><subfield code="a">DE-83</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QP519.9.C47</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">543/.0894</subfield><subfield code="2">20</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">VG 7500</subfield><subfield code="0">(DE-625)147206:253</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">CHE 232f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">CHE 230f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">CHE 234f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Grob, Konrad</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">On-Line coupled LC-GC</subfield><subfield code="c">by Konrad Grob</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Heidelberg</subfield><subfield code="b">Hüthig</subfield><subfield code="c">1991</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XXVII, 462 S.</subfield><subfield code="b">zahlr. graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Chromatographic methods</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Literaturverz. S. 432 - 448</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Chromatographic analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Gas chromatography</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Liquid chromatography</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Kopplung</subfield><subfield code="g">Analytische Chemie</subfield><subfield code="0">(DE-588)4326657-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Gaschromatographie</subfield><subfield code="0">(DE-588)4019330-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Flüssigkeitschromatographie</subfield><subfield code="0">(DE-588)4017622-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Flüssigkeitschromatographie</subfield><subfield code="0">(DE-588)4017622-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Gaschromatographie</subfield><subfield code="0">(DE-588)4019330-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Kopplung</subfield><subfield code="g">Analytische Chemie</subfield><subfield code="0">(DE-588)4326657-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">GBV Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=002650562&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-002650562</subfield></datafield></record></collection> |
id | DE-604.BV004261901 |
illustrated | Illustrated |
indexdate | 2024-07-09T16:10:36Z |
institution | BVB |
isbn | 3778518720 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-002650562 |
oclc_num | 24694713 |
open_access_boolean | |
owner | DE-703 DE-355 DE-BY-UBR DE-20 DE-91G DE-BY-TUM DE-83 |
owner_facet | DE-703 DE-355 DE-BY-UBR DE-20 DE-91G DE-BY-TUM DE-83 |
physical | XXVII, 462 S. zahlr. graph. Darst. |
publishDate | 1991 |
publishDateSearch | 1991 |
publishDateSort | 1991 |
publisher | Hüthig |
record_format | marc |
series2 | Chromatographic methods |
spelling | Grob, Konrad Verfasser aut On-Line coupled LC-GC by Konrad Grob Heidelberg Hüthig 1991 XXVII, 462 S. zahlr. graph. Darst. txt rdacontent n rdamedia nc rdacarrier Chromatographic methods Literaturverz. S. 432 - 448 Chromatographic analysis Gas chromatography Liquid chromatography Kopplung Analytische Chemie (DE-588)4326657-5 gnd rswk-swf Gaschromatographie (DE-588)4019330-5 gnd rswk-swf Flüssigkeitschromatographie (DE-588)4017622-8 gnd rswk-swf Flüssigkeitschromatographie (DE-588)4017622-8 s Gaschromatographie (DE-588)4019330-5 s Kopplung Analytische Chemie (DE-588)4326657-5 s DE-604 GBV Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=002650562&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Grob, Konrad On-Line coupled LC-GC Chromatographic analysis Gas chromatography Liquid chromatography Kopplung Analytische Chemie (DE-588)4326657-5 gnd Gaschromatographie (DE-588)4019330-5 gnd Flüssigkeitschromatographie (DE-588)4017622-8 gnd |
subject_GND | (DE-588)4326657-5 (DE-588)4019330-5 (DE-588)4017622-8 |
title | On-Line coupled LC-GC |
title_auth | On-Line coupled LC-GC |
title_exact_search | On-Line coupled LC-GC |
title_full | On-Line coupled LC-GC by Konrad Grob |
title_fullStr | On-Line coupled LC-GC by Konrad Grob |
title_full_unstemmed | On-Line coupled LC-GC by Konrad Grob |
title_short | On-Line coupled LC-GC |
title_sort | on line coupled lc gc |
topic | Chromatographic analysis Gas chromatography Liquid chromatography Kopplung Analytische Chemie (DE-588)4326657-5 gnd Gaschromatographie (DE-588)4019330-5 gnd Flüssigkeitschromatographie (DE-588)4017622-8 gnd |
topic_facet | Chromatographic analysis Gas chromatography Liquid chromatography Kopplung Analytische Chemie Gaschromatographie Flüssigkeitschromatographie |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=002650562&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT grobkonrad onlinecoupledlcgc |