Categories, allegories:
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Amsterdam u.a.
North-Holland
1990
|
Schriftenreihe: | North-Holland mathematical library
39 |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | XVII, 296 S. |
ISBN: | 0444703675 0444703683 |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV004252831 | ||
003 | DE-604 | ||
005 | 19950411 | ||
007 | t | ||
008 | 910228s1990 |||| 00||| eng d | ||
020 | |a 0444703675 |9 0-444-70367-5 | ||
020 | |a 0444703683 |9 0-444-70368-3 | ||
035 | |a (OCoLC)246747511 | ||
035 | |a (DE-599)BVBBV004252831 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
049 | |a DE-91G |a DE-12 |a DE-384 |a DE-739 |a DE-29T |a DE-706 |a DE-83 |a DE-11 |a DE-188 | ||
084 | |a SK 230 |0 (DE-625)143225: |2 rvk | ||
084 | |a MAT 180f |2 stub | ||
084 | |a 68Q70 |2 msc | ||
084 | |a 18B20 |2 msc | ||
100 | 1 | |a Freyd, Peter J. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Categories, allegories |c Peter J. Freyd ; Andre Scedrov |
264 | 1 | |a Amsterdam u.a. |b North-Holland |c 1990 | |
300 | |a XVII, 296 S. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a North-Holland mathematical library |v 39 | |
650 | 0 | 7 | |a Kategorientheorie |0 (DE-588)4120552-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Relationenalgebra |0 (DE-588)4206494-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Kategorie |g Mathematik |0 (DE-588)4129930-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Allegorie |g Mathematik |0 (DE-588)4304012-3 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Kategorie |g Mathematik |0 (DE-588)4129930-9 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Relationenalgebra |0 (DE-588)4206494-6 |D s |
689 | 1 | |5 DE-604 | |
689 | 2 | 0 | |a Allegorie |g Mathematik |0 (DE-588)4304012-3 |D s |
689 | 2 | |5 DE-604 | |
689 | 3 | 0 | |a Kategorientheorie |0 (DE-588)4120552-2 |D s |
689 | 3 | |5 DE-188 | |
700 | 1 | |a Ščedrov, Andrej |e Verfasser |4 aut | |
830 | 0 | |a North-Holland mathematical library |v 39 |w (DE-604)BV000005206 |9 39 | |
856 | 4 | 2 | |m HBZ Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=002645525&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-002645525 |
Datensatz im Suchindex
_version_ | 1804118448982196224 |
---|---|
adam_text | CONTENTS (and introduced notions)
In the list of notions, alternate words appear in brackets.
Chapter One: CATEGORIES
1.1. Basic definitions 3
1.1 CATEGORY, morphism, source, target, composition 3
1.11 ESSENTIALLY ALGEBRAIC THEORY 3
1.12 directed equality 3
1.13 IDENTITY MORPHISM 3
1.14 MONOID 4
1.15 DISCRETE CATEGORY 4
1.17 LEFT INVERTIBLE, RIGHT INVERTIBLE, ISOMORPHISM,
INVERSE, GROUPOID, GROUP 5
1.18 FUNCTOR, separating functions 5
1.182 CONTRAVARIANT FUNCTOR, OPPOSITE CATEGORY,
COVARIANT FUNCTOR 6
1.1(10) ISOMORPHISM OF CATEQORIES 6
1.2. Basic examples and constructions 7
1.2 object, proto morphism, SOURCE TARGET PREDICATE
[ARROW PREDICATE] 7
1.22 category of. .. , category composed of... 8
1.241 CATEGORY OF SETS 9
1.242 CATEGORY OF GROUPS 9
1.243 FOUNDED (one category on another), FORGETFUL FUNCTOR,
CONCRETE CATEGORY, UNDERLYING SET FUNCTOR 9
1.244 underlying set 10
1.245 PRE ORDERING 10
1.246 group as a category, POSET 10
1.251 ARROW NOTATION, puncture mark 10
1.26 SLICE CATEGORY 11
1.261 category of rings, category of augmented rings 12
1.262 LOCAL HOMEOMORPHISMS, LAZARD SHEAVES 12
1.263 counter slice category, category of pointed sets, category of pointed
spaces 12
1.27 SMALL CATEGORY, FUNCTOR CATEGORY, NATURAL
TRANSFORMATION, CONJUGATE 13
1.271 CATEGORY OF M SETS, RIGHT A SET 13
1.272 CAYLEY REPRESENTATION 14
1.273 LEFT A SET 14
1.274 NATURAL EQUIVALENCE 15
1.28 IDEMPOTENT 15
1.281 SPLIT IDEMPOTENT 15
1.283 STRONGLY CONNECTED 16
1.284 PRE FUNCTOR 16
1.3. Equivalence of categories 17
1.31 EMBEDDING, FULL FUNCTOR, FULL SUBCATEGORY,
REPRESENTATIVE IMAGE, EQUIVALENCE FUNCTOR 17
1.32 STRONG EQUIVALENCE 17
1.33 REFLECTS (properties by functors), FAITHFUL FUNCTOR 17
1.332 contravariant Cayley representation, power set functor 18
1.34 ISOMORPHIC OBJECTS 18
1.35 FORGETFUL FUNCTOR, grounding, foundation functor 19
1.36 INFLATION, INFLATION CROSS SECTION 19
1.363 EQUIVALENT CATEGORIES 20
1.364 SKELETAL, SKELETON, COSKELETON, support of a
permutation, transposition 20
1.366 EQUIVALENCE KERNEL 21
1.372 ideal, downdeal, updeal 22
1.373 SECTION OF A SHEAF, PRE SHEAF, GERM, STALK,
ADJOINT PAIR, LEFT ADJOINT, RIGHT ADJOINT,
ASSOCIATED SHEAF FUNCTOR 23
1.374 consistent, realizable (subsets of a pre sheaf), complete pre sheaf 25
1.38 DUALITY 26
1.381 category composed of finite lists 26
1.384 category of rings, category of augmented rings 26
1.389 STONE DUALITY, STONE SPACE 28
1.39 linearly ordered category 28
1.392 FINITE PRESENTATION 29
1.395 g SEQUENCE, SATISFIES (a g sequence), COMPLEMENTARY
g SEQUENCE 30
1.398 tree, rooted tree, root, length of a tree, sprouting, g tree 32
1.399 mapping cylinder 33
1.3(10)4 good, nearly good, stable, coextensive, S coextensive (g trees) 35
1.3(10)6 C stability (of g trees) 36
1.4. Cartesian categories 37
1.41 MONIC [monomorphism, mono, injection, inclusion, monic
morphism] 37
1.412 monic family, TABLE, COLUMN, TOP, FEET, RELATION,
SUBOBJECT, VALUE [SUBTERMINATOR] 38
1.413 CONTAINMENT (of tables) 39
1.415 tabulation, tabulates a relation 39
1.421 TERMINATOR [final object, terminal object] 39
1.423 binary PRODUCT diagram, has binary products 40
1.425 product of a family 41
1.427 support of a functor 42
1.428 EQUALIZER, has equalizers 42
1.43 CARTESIAN CATEGORY [finitely complete, left exact] 43
1.431 PULLBACK diagram, has pullbacks 44
1.437 REPRESENTATION OF CARTESIAN CATEGORIES 46
1.442 REPRESENTABLE FUNCTOR 47
1.444 HORN SENTENCE 48
1.451 INVERSE IMAGE 48
1.452 SEMI LATTICE, entire subobject 49
1.454 LEVEL [kernel pair, congruence], DIAGONAL, diagonal subobject 50
1.461 fiber, fiber product 50
1.462 EVALUATION FUNCTORS 50
1.463 conjugate functors 50
1.464 YONEDA REPRESENTATION 51
1.47 special cartesian category 51
1.48 DENSE MONIC, RATIONAL CATEGORY 52
1.49 SHORT COLUMN (of a table), COMPOSITION (of tables) AT (a
column) 54
1.491 t CATEGORY 54
1.492 SUPPORTING (sequence of columns), PRUNING (of a column) 54
1.493 category of ordinal lists 55
1.494 RESURFACING (of a table) 55
1.498 CANONICAL CARTESIAN STRUCTURE 56
1.49(11) AUSPICIOUS (sequence of columns) 58
1.4(10) FREE t CATEGORY 59
1.4(10)1 WELL MADE, WELL MADE PART 59
1.4(11) CANONICAL SLICE 62
1.4(11)4 POINT, GENERIC POINT 64
1.5. Regular categories 68
1.51 ALLOWS, IMAGE, has images, ADJOINT PAIR (of functions between
posets), LEFT ADJOINT, RIGHT ADJOINT 68
1.512 COVER 68
1.514 EPIC [epimorphism] 69
1.52 REGULAR CATEGORY, PRE REGULAR CATEGORY 69
1.521 STALK FUNCTOR 70
1.522 SUPPORT, WELL SUPPORTED 70
1.523 WELL POINTED 70
1.524 PROJECTIVE 71
1.525 CAPITAL 72
1.53 SLICE LEMMA for regular categories, DIAGONAL FUNCTOR 72
1.54 CAPITALIZATION LEMMA 74
1.541 equivalence condition, slice condition, union condition, directed union 74
1.545 relative capitalization 75
1.55 HENKIN LUBKIN THEOREM [representation theorem for regular
categories] 77
1.552 special pre regular category 77
1.56 composition of relations 78
1.561 RECIPROCAL 79
1.563 MODULAR IDENTITY 79
1.564 GRAPH (of a morphism), MAP, ENTIRE, SIMPLE 80
1.565 PUSHOUT 81
1.566 COEQUALIZER 81
1.567 EQUIVALENCE RELATION, EFFECTIVE EQUIVALENCE
RELATION, EFFECTIVE REGULAR CATEGORY 82
1.568 QUOTIENT OBJECT 82
1.56(10) CONSTANT MORPHISM 83
1.57 CHOICE OBJECT, AC REGULAR CATEGORY, Axiom of Choice 83
1.572 category composed of recursive functions 84
1.573 category composed of primitive recursive functions 84
1.58 BICARTESIAN CATEGORY, COCARTESIAN CATEGORY,
COTERMINATOR [initial object, coterminal object],
COPRODUCT, STRICT COTERMINATOR 85
1.581 representation of bicartesian categories 85
1.587 bicartesian characterization of the set of natural numbers 86
1.59 ABELIAN CATEGORY 87
1.591 ZERO OBJECT, ZERO MORPHISM, category with zero, middle
two interchange law, HALF ADDITIVE CATEGORY, ADDITIVE
CATEGORY 87
1.592 KERNEL, COKERNEL 89
1.593 NORMAL SUBOBJECT 89
1.595 abelian group object, homomorphism 90
1.597 EXACT CATEGORY 92
1.598 left normal, right normal, normal (categories with zero) 95
1.599 EXACT SEQUENCE, five lemma, snake lemma 96
1.6. Pre logoi 98
1.6 PRE LOGOS 98
1.612 DISTRIBUTIVE LATTICE 99
1.614 REPRESENTATION OF PRE LOGOI 99
1.62 PASTING LEMMA 100
1.623 POSITIVE PRE LOGOS 102
1.63 slice lemma for pre logoi 103
1.631 COMPLEMENTED SUBOBJECT, COMPLEMENTED
SUBTERMINATOR 103
1.632 GENERATING SET, BASIS 104
1.634 PRE FILTER, FILTER 105
1.635 REPRESENTATION THEOREM FOR PRE LOGOI, BOOLEAN
ALGEBRA, ULTRA FILTER 106
1.637 special pre logos 107
1.638 well joined category 108
1.64 BOOLEAN PRE LOGOS 109
1.644 ULTRA PRODUCT FUNCTOR, ULTRA POWER FUNCTOR 109
1.645 properness of a subobject 110
1.648 COMPLETE MEASURE, ATOMIC MEASURE 110
1.65 PRE TOPOS 111
1.651 AMALGAMATION LEMMA 111
1.658 DECIDABLE OBJECT 114
1.662 DIACONESCU BOOLEAN THEOREM 115
1.7. Logoi 117
1.7 LOGOS 117
1.712 LOCALLY COMPLETE CATEGORY 117
1.72 HEYTING ALGEBRA 118
1.723 LOCALE, category of complete Heyting algebras, category of locales 118
1.727 NEGATION 121
1.728 LAW OF EXCLUDED MIDDLE 121
1.72(10) scone of a Heyting algebra 122
1.72(11) free Heyting algebra, RETRACT 123
1.732 slice lemma for logoi 123
1.733 COPRIME OBJECT, CONNECTED OBJECT, FOCAL LOGOS 124
1.734 FOCAL REPRESENTATION 124
1.74 GEOMETRIC REPRESENTATION THEOREM FOR LOGOI 125
1.744 DOMINATES, LEFT FULL 127
1.74(10) FREYD CURVE 129
1.75 STONE REPRESENTATION THEOREM FOR LOGOI 129
1.751 ATOM, ATOMICALLY BASED, ATOMLESS, periodic power 130
1.752 STONE SPACE, CLOPEN 130
1.76 MICRO SHEAF 132
1.77 TRANSITIVE CLOSURE, TRANSITIVE REFLEXIVE CLOSURE,
TRANSITIVE (PRE )LOGOS 133
1.772 O TRANSITIVE LOGOS, tr TRANSITIVE PRE LOGOS 133
1.775 EQUIVALENCE CLOSURE, E STANDARD PRE LOGOS 134
1.776 representation theorem for countable cr transitive (pre )logoi 135
1.8. Adjoint functors, Grothendieck topoi, and exponential categories 138
1.81 ADJOINT PAIR OF FUNCTORS, LEFT ADJOINT, RIGHT
ADJOINT 138
1.813 REFLECTIVE SUBCATEGORY, REFLECTION 138
1.815 CLOSURE OPERATION 139
1.816 COREFLECTIVE INCLUSION 139
1.818 ADJOINT ON THE RIGHT (LEFT), Galois connection 140
1.82 DIAGONAL FUNCTOR 140
1.821 diagram in one category modelled on another, lower bound,
compatibility condition, greatest lower bound 140
1.822 LIMIT, COLIMIT 141
1.823 COMPLETE, COCOMPLETE (category) 141
1.827 CONTINUOUS, COCONTINUOUS (functor) 142
1.828 weak , WEAK LIMIT, WEAKLY COMPLETE 142
1.82(10) PRE LIMIT, PRE COMPLETE 143
1.83 PRE ADJOINT, PRE REFLECTION, PRE ADJOINT FUNCTOR,
GENERAL ADJOINT FUNCTOR THEOREM 143
1.831 UNIFORMLY CONTINUOUS (functor), MORE GENERAL
ADJOINT FUNCTOR THEOREM 144
1.832 POINTWISE CONTINUOUS (functor) 144
1.833 functor generated by the elements, PETTY FUNCTOR 145
1.834 GENERAL REPRESENTABILITY THEOREM, category of
elements 145
1.838 WELL POWERED CATEGORY, minimal object 146
1.839 cardinality function, generated by A through G 147
1.83(10) COGENERATING SET, SPECIAL ADJOINT FUNCTOR
THEOREM 148
1.84 GIRAUD DEFINITION OF A GROTHENDIECK TOPOS 148
1.85 EXPONENTIAL CATEGORY [cartesian closed], EVALUATION
MAP 150
1.853 bifunctor 152
1.857 EXPONENTIAL IDEAL, REPLETE SUBCATEGORY 155
1.858 KURATOWSKI INTERIOR OPERATION, open elements,
LAWVERE TIERNEY CLOSURE OPERATION [L T],
Kuratowski closure operation, closed elements 156
1.859 BASEABLE 156
1.9. Topoi 157
1.9 UNIVERSAL RELATION, POWER OBJECT, TOPOS 157
1.912 SUBOBJECT CLASSIFIER, universal subobject,
CHARACTERISTIC MAP 158
1.919 g large subobject 161
1.92 SINGLETON MAP 162
1.921 elementary topos 162
1.93 slice lemma for topoi 165
1.931 FUNDAMENTAL LEMMA OF TOPOI 166
1.94 family of subobjects NAMED BY, INTERNALLY DEFINED
INTERSECTION 168
1.942 NAME OF a subobject 168
1.944 topos has a strict coterminator 170
1.945 topos is regular 170
1.946 topos is a logos 171
1.947 topos is a transitive logos 171
1.949 INTERNALLY DEFINED UNION, permanent lower (upper) bound 172
1.94(10) WELL POINTED PART, SOLVABLE TOPOS 172
1.95 topos is a pre topos 173
1.952 topos is positive 173
1.954 topos has coequalizers 174
1.961 INJECTIVE, INTERNALLY INJECTIVE 174
1.964 VALUE BASED 175
1.965 INTERNALLY COGENERATES 175
1.966 PROGENITOR 176
1.969 LAWVERE DEFINITION, TIERNEY DEFINITION (of a
Grothendieck topos) 177
1.96(11) slice lemma for Grothendieck topoi 178
1.97 BOOLEAN TOPOS 178
1.971 small object 178
1.973 IAC [Internal Axiom of Choice] 179
1.978 ETENDUE 181
1.98 NATURAL NUMBERS OBJECT in a topos 181
1.987 PEANO PROPERTY 185
1.98(10) bicartesian characterization of a natural numbers object 187
1.98(12) ^ ACTION, FREE A ACTION 188
1.(10). Sconing 190
1.(10) EXACTING CATEGORY 190
1.(10)1 SCONE 190
1.(10)3 free categories, RETRACT 192
1.(10)4 SMALL PROJECTIVE 192
Chapter Two: ALLEGORIES
2.1. Basic definitions 195
2.1 RECIPROCATION, COMPOSITION, INTERSECTION, semi
distributivity, law of modularity 195
2.11 ALLEGORY 196
2.111 r VALUED RELATION 197
2.113 MODULAR LATTICE 197
2.12 REFLEXIVE, SYMMETRIC, TRANSITIVE, COREFLEXIVE,
EQUIVALENCE RELATION 198
2.122 DOMAIN 198
2.13 ENTIRE, SIMPLE, MAP 199
2.14 TABULATES (a morphism), TABULAR (morphism), TABULAR
ALLEGORY, connected locale 200
2.15 PARTIAL UNIT, UNIT, UNITARY ALLEGORY 202
2.153 ASSEMBLY, CAUCUS, modulus 202
2.154 (UNITARY) REPRESENTATION OF ALLEGORIES,
representation theorem for unitary tabular allegories 204
2.156 partition representation [combinatorial representation], geometric
representation (of modular lattices) 205
2.157 projective plane, Desargues theorem 205
2.158 representable allegory 207
2.165 PRE TABULAR ALLEGORY 211
2.167 tabular reflection 212
2.169 EFFECTIVE ALLEGORY, EFFECTIVE REFLECTION 213
2.16(10) SEMI SIMPLE morphism, SEMI SIMPLE ALLEGORY 213
2.16(11) neighbors (pair of idempotents) 214
2.16(12) r VALUED SETS 215
2.2. Distributive allegories 216
2.21 DISTRIBUTIVE ALLEGORY 216
2.215 POSITIVE ALLEGORY 218
2.216 POSITIVE REFLECTION 218
2.218 representation theorem for distributive allegories 220
2.22 LOCALLY COMPLETE DISTRIBUTIVE ALLEGORY 221
2.221 downdeal, LOCAL COMPLETION 221
2.222 ideal 221
2.223 GLOBALLY COMPLETE 221
2.224 GLOBAL COMPLETION 222
2.226 SYSTEMIC COMPLETION 222
2.227 C?(Y) valued sets and sheaves on Y 223
2.3. Division allegories 225
2.31 DIVISION ALLEGORY 225
2.331 representation theorem for division allegories 228
2.35 SYMMETRIC DIVISION 231
2.351 STRAIGHT (morphism) 231
2.357 SIMPLE PART, DOMAIN OF SIMPLICITY 234
2.4. Power allegories 235
2.41 POWER ALLEGORY, THICK (morphism) 235
2.415 POWER OBJECT, SINGLETON MAP 237
2.418 REALIZABILITY TOPOS 238
2.42 SPLITTING LEMMAS 238
2.43 PRE POWER ALLEGORY 240
2.436 Cantor s diagonal proof 242
2.437 recursively enumerable sets which are not recursive 243
2.438 Peano axioms, Godel numbers, inconsistency 243
2.441 PRE POSITIVE ALLEGORY, well joined category 244
2.442 LAW OF METONYMY 246
2.445 stilted relations 249
2.451 FREE BOOLEAN ALGEBRA 250
2.453 Continuum Hypothesis 252
2.454 WELL POINTED 253
2.5. Quotient allegories 255
2.5 CONGRUENCE (on an allegory), QUOTIENT ALLEGORY 255
2.521 BOOLEAN QUOTIENT 255
2.522 CLOSED QUOTIENT 255
2.542 faithful bicartesian representation in a boolean topos 257
2.53 AMENABLE CONGRUENCE, AMENABLE QUOTIENT 256
2.55 quotients of complete allegories 258
2.56 Axiom of Choice, independence of 258
2.563 SEPARATED OBJECT, DENSE RELATION 260
APPENDICES
Appendix A 267
countable dense linearly ordered set, Cantor s back and forth argument,
complete metric on a Gs set, countable power of 2, Cantor space, countable
power of the natural numbers, Baire space, countable atomless boolean algebras
Appendix B 270
B.I SORT, SORT WORD, VARIABLE, SORT ASSIGNMENT,
PREDICATE SYMBOL, SORT TYPE ASSIGNMENT [arity],
EQUALITY SYMBOL, CONNECTIVES, QUANTIFIERS,
PUNCTUATORS 270
B.ll FORMULA, FREE, BOUND, INDEX (occurrences of a variable),
SCOPE (of a quantifier), ASSERTION, TOLERATES 270
B.12 PRIMITIVE FUNCTIONAL SEMANTICS, VALID (assertion),
MODEL, THEORY, ENTAILS IN PRIMITIVE FUNCTIONAL
SEMANTICS 270
B.21 RULES OF INFERENCE, FIRST ORDER LOGIC,
SYNTACTICALLY ENTAILS 271
B.211 COHERENT LOGIC, REGULAR LOGIC, HORN LOGIC,
HIGHER ORDER LOGIC, prepositional theories 272
B.22 DERIVED RULES 273
B.3 DERIVED PREDICATE TOKEN, INSTANTIATION (of a
variable), DERIVED PREDICATE 275
B.31 FREE ALLEGORY (on a theory) 276
B.315 FREE (REGULAR CATEGORY, PRE LOGOS, LOGOS, TOPOS) 277
B.316 ARITHMETIC (theories of), NUMERICAL SORT, NUMERICAL
CONSTANT, FUNCTION SYMBOL, term, INDUCTION, PEANO
AXIOMS, HIGHER ORDER ARITHMETIC 278
B.317 free topos with a natural numbers object 279
B.318 numerical coding of inference and inconsistency 281
B.32 DISJUNCTION PROPERTY, EXISTENCE PROPERTY,
NUMERICAL EXISTENCE PROPERTY 281
B.41 SEMANTICALLY ENTAILS IN A UNITARY ALLEGORY 281
B.411 tarskian semantics, BOOLEAN THEORY 282
B.421 GODEL S COMPLETENESS THEOREM 282
B.5 ZERMELO FRAENKEL SET THEORY 283
B.51 FOURMAN HAYASHI INTERPRETATION, well founded part,
SCOTT SOLOVAY BOOLEAN VALUED MODEL 283
B.52 Continuum Hypothesis, independence of 285
B.53 Axiom of Choice, independence of 285
Subject Index 287
|
any_adam_object | 1 |
author | Freyd, Peter J. Ščedrov, Andrej |
author_facet | Freyd, Peter J. Ščedrov, Andrej |
author_role | aut aut |
author_sort | Freyd, Peter J. |
author_variant | p j f pj pjf a š aš |
building | Verbundindex |
bvnumber | BV004252831 |
classification_rvk | SK 230 |
classification_tum | MAT 180f |
ctrlnum | (OCoLC)246747511 (DE-599)BVBBV004252831 |
discipline | Mathematik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01969nam a2200505 cb4500</leader><controlfield tag="001">BV004252831</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">19950411 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">910228s1990 |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0444703675</subfield><subfield code="9">0-444-70367-5</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0444703683</subfield><subfield code="9">0-444-70368-3</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)246747511</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV004252831</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91G</subfield><subfield code="a">DE-12</subfield><subfield code="a">DE-384</subfield><subfield code="a">DE-739</subfield><subfield code="a">DE-29T</subfield><subfield code="a">DE-706</subfield><subfield code="a">DE-83</subfield><subfield code="a">DE-11</subfield><subfield code="a">DE-188</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 230</subfield><subfield code="0">(DE-625)143225:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 180f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">68Q70</subfield><subfield code="2">msc</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">18B20</subfield><subfield code="2">msc</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Freyd, Peter J.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Categories, allegories</subfield><subfield code="c">Peter J. Freyd ; Andre Scedrov</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Amsterdam u.a.</subfield><subfield code="b">North-Holland</subfield><subfield code="c">1990</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XVII, 296 S.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">North-Holland mathematical library</subfield><subfield code="v">39</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Kategorientheorie</subfield><subfield code="0">(DE-588)4120552-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Relationenalgebra</subfield><subfield code="0">(DE-588)4206494-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Kategorie</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4129930-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Allegorie</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4304012-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Kategorie</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4129930-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Relationenalgebra</subfield><subfield code="0">(DE-588)4206494-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Allegorie</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4304012-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="3" ind2="0"><subfield code="a">Kategorientheorie</subfield><subfield code="0">(DE-588)4120552-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="3" ind2=" "><subfield code="5">DE-188</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ščedrov, Andrej</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">North-Holland mathematical library</subfield><subfield code="v">39</subfield><subfield code="w">(DE-604)BV000005206</subfield><subfield code="9">39</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HBZ Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=002645525&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-002645525</subfield></datafield></record></collection> |
id | DE-604.BV004252831 |
illustrated | Not Illustrated |
indexdate | 2024-07-09T16:10:28Z |
institution | BVB |
isbn | 0444703675 0444703683 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-002645525 |
oclc_num | 246747511 |
open_access_boolean | |
owner | DE-91G DE-BY-TUM DE-12 DE-384 DE-739 DE-29T DE-706 DE-83 DE-11 DE-188 |
owner_facet | DE-91G DE-BY-TUM DE-12 DE-384 DE-739 DE-29T DE-706 DE-83 DE-11 DE-188 |
physical | XVII, 296 S. |
publishDate | 1990 |
publishDateSearch | 1990 |
publishDateSort | 1990 |
publisher | North-Holland |
record_format | marc |
series | North-Holland mathematical library |
series2 | North-Holland mathematical library |
spelling | Freyd, Peter J. Verfasser aut Categories, allegories Peter J. Freyd ; Andre Scedrov Amsterdam u.a. North-Holland 1990 XVII, 296 S. txt rdacontent n rdamedia nc rdacarrier North-Holland mathematical library 39 Kategorientheorie (DE-588)4120552-2 gnd rswk-swf Relationenalgebra (DE-588)4206494-6 gnd rswk-swf Kategorie Mathematik (DE-588)4129930-9 gnd rswk-swf Allegorie Mathematik (DE-588)4304012-3 gnd rswk-swf Kategorie Mathematik (DE-588)4129930-9 s DE-604 Relationenalgebra (DE-588)4206494-6 s Allegorie Mathematik (DE-588)4304012-3 s Kategorientheorie (DE-588)4120552-2 s DE-188 Ščedrov, Andrej Verfasser aut North-Holland mathematical library 39 (DE-604)BV000005206 39 HBZ Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=002645525&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Freyd, Peter J. Ščedrov, Andrej Categories, allegories North-Holland mathematical library Kategorientheorie (DE-588)4120552-2 gnd Relationenalgebra (DE-588)4206494-6 gnd Kategorie Mathematik (DE-588)4129930-9 gnd Allegorie Mathematik (DE-588)4304012-3 gnd |
subject_GND | (DE-588)4120552-2 (DE-588)4206494-6 (DE-588)4129930-9 (DE-588)4304012-3 |
title | Categories, allegories |
title_auth | Categories, allegories |
title_exact_search | Categories, allegories |
title_full | Categories, allegories Peter J. Freyd ; Andre Scedrov |
title_fullStr | Categories, allegories Peter J. Freyd ; Andre Scedrov |
title_full_unstemmed | Categories, allegories Peter J. Freyd ; Andre Scedrov |
title_short | Categories, allegories |
title_sort | categories allegories |
topic | Kategorientheorie (DE-588)4120552-2 gnd Relationenalgebra (DE-588)4206494-6 gnd Kategorie Mathematik (DE-588)4129930-9 gnd Allegorie Mathematik (DE-588)4304012-3 gnd |
topic_facet | Kategorientheorie Relationenalgebra Kategorie Mathematik Allegorie Mathematik |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=002645525&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
volume_link | (DE-604)BV000005206 |
work_keys_str_mv | AT freydpeterj categoriesallegories AT scedrovandrej categoriesallegories |