The topology of torus actions on symplectic manifolds:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English French |
Veröffentlicht: |
Basel [u.a.]
Birkhäuser
1991
|
Schriftenreihe: | Progress in mathematics
93 |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | 181 S. graph. Darst. |
ISBN: | 3764326026 0817626026 |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV004236402 | ||
003 | DE-604 | ||
005 | 20061212 | ||
007 | t | ||
008 | 910121s1991 gw d||| |||| 00||| eng d | ||
020 | |a 3764326026 |9 3-7643-2602-6 | ||
020 | |a 0817626026 |9 0-8176-2602-6 | ||
035 | |a (OCoLC)23140118 | ||
035 | |a (DE-599)BVBBV004236402 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 1 | |a eng |h fre | |
044 | |a gw |c DE | ||
049 | |a DE-12 |a DE-384 |a DE-91G |a DE-703 |a DE-355 |a DE-824 |a DE-29T |a DE-19 |a DE-634 |a DE-83 |a DE-11 |a DE-188 | ||
050 | 0 | |a QA641 | |
082 | 0 | |a 516.3/6 |2 20 | |
084 | |a SK 340 |0 (DE-625)143232: |2 rvk | ||
084 | |a SK 350 |0 (DE-625)143233: |2 rvk | ||
084 | |a MAT 574f |2 stub | ||
084 | |a PHY 014f |2 stub | ||
084 | |a 58F05 |2 msc | ||
100 | 1 | |a Audin, Michèle |d 1954- |e Verfasser |0 (DE-588)14151552X |4 aut | |
240 | 1 | 0 | |a Opérations hamiltoniennes de tores sur les variétés symplectiques |
245 | 1 | 0 | |a The topology of torus actions on symplectic manifolds |c Michèle Audin |
264 | 1 | |a Basel [u.a.] |b Birkhäuser |c 1991 | |
300 | |a 181 S. |b graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Progress in mathematics |v 93 | |
650 | 7 | |a Hamilton, systèmes de |2 ram | |
650 | 7 | |a Variétés symplectiques |2 ram | |
650 | 4 | |a Hamiltonian systems | |
650 | 4 | |a Symplectic manifolds | |
650 | 0 | 7 | |a Algebraische Topologie |0 (DE-588)4120861-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Lie-Gruppe |0 (DE-588)4035695-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Torische Varietät |0 (DE-588)4786945-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Torus |0 (DE-588)4185738-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Topologie |0 (DE-588)4060425-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Symplektische Mannigfaltigkeit |0 (DE-588)4290704-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Hamilton-Operator |0 (DE-588)4072278-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Symplektische Geometrie |0 (DE-588)4194232-2 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Symplektische Geometrie |0 (DE-588)4194232-2 |D s |
689 | 0 | 1 | |a Topologie |0 (DE-588)4060425-1 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Torus |0 (DE-588)4185738-0 |D s |
689 | 1 | 1 | |a Hamilton-Operator |0 (DE-588)4072278-8 |D s |
689 | 1 | 2 | |a Symplektische Geometrie |0 (DE-588)4194232-2 |D s |
689 | 1 | |5 DE-604 | |
689 | 2 | 0 | |a Symplektische Mannigfaltigkeit |0 (DE-588)4290704-4 |D s |
689 | 2 | 1 | |a Torus |0 (DE-588)4185738-0 |D s |
689 | 2 | 2 | |a Lie-Gruppe |0 (DE-588)4035695-4 |D s |
689 | 2 | |5 DE-604 | |
689 | 3 | 0 | |a Symplektische Geometrie |0 (DE-588)4194232-2 |D s |
689 | 3 | 1 | |a Algebraische Topologie |0 (DE-588)4120861-4 |D s |
689 | 3 | 2 | |a Torische Varietät |0 (DE-588)4786945-8 |D s |
689 | 3 | |8 1\p |5 DE-604 | |
830 | 0 | |a Progress in mathematics |v 93 |w (DE-604)BV000004120 |9 93 | |
856 | 4 | 2 | |m HBZ Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=002635877&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-002635877 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804118433108852737 |
---|---|
adam_text | Contents
Introduction 7
I Smooth Lie group actions on manifolds 13
1 Generalities 13
1.1 Notation 13
1.2 Orbits and fundamental vector fields 14
1.3 Examples 15
1.4 More definitions 15
1.5 Equivariant maps and orbit spaces 16
2 Equivariant tubular neighborhoods and orbit types decomposition . . 17
2.1 The slice theorem (equivariant tubular neighborhood) 17
2.2 Applications 19
3 Examples: 2 and 3 dimensional 5 1 manifolds 22
3.1 5x actions on surfaces 22
3.2 3 manifolds; the principal case 25
3.3 Seifert manifolds 28
3.4 Associated principal actions and Euler class 34
II Symplectic geometry 37
1 Symplectic manifolds 37
1.1 Symplectic vector spaces 37
1.2 Symplectic manifolds, definition 38
1.3 The Darboux theorem 39
1.4 Examples: t/(n) orbits in hermitian matrices 41
1.5 Calibrated almost complex structures 42
2 Hamiltonian vector fields and Poisson manifolds 43
2.1 Hamiltonian vector fields 43
2.2 The Poisson bracket on a symplectic manifold 45
3 Symplectic and hamiltonian actions 46
3.1 Symplectic actions 46
3.2 Hamiltonian actions 47
3.3 A machine producing examples: the coadjoint representation of
a Lie group 49
3.4 Some properties of moment maps 52
3.5 Noether type theorems 54
3
4 Contents
3.6 Symplectic reduction, examples 57
III Morse theory for hamiltonians 61
1 Critical points of almost periodic hamiltonians 61
1.1 Almost periodic hamiltonians 61
1.2 Critical points 62
2 Morse functions (in the sense of Bott) 63
2.1 Definitions 63
2.2 Frankel s theorem 64
2.3 PerestroTka 64
3 Connectivity of the fibers of the moment map 66
3.1 Connectivity of levels 66
3.2 Case of almost periodic hamiltonians 66
4 Application to convexity theorems 66
4.1 Proof of the Hausdorff Ginsburg theorem 66
4.2 Convexity of the image of the moment map 67
4.3 Application: a theorem of Schur on hermitian matrices 71
4.4 Application: a theorem of Kushnirenko on monomial equations . 72
IV About manifolds of this dimension 75
1 Characterisation of those circle actions which are hamiltonian 76
1.1 Statement of the theorem 76
1.2 Proof 76
2 Symplectic reduction of the regular levels for a periodic hamiltonian . 78
2.1 What happens near an extremum 78
2.2 What happens when going through a critical value 79 t
2.3 First applications 80
2.4 What happens when there are only two critical values 81
3 Blowing up fixed points; creation of index 2 critical points 84
3.1 Blowing up 0 in C2 84
3.2 Extension of an S action 86
3.3 Gradient manifolds and exceptional divisors 87
4 4 manifolds with periodic hamiltonians 88
4.1 Description 88
5 Plumbing 90
5.1 Plumbing of disc bundles 90
5.2 Equivariant plumbing along star shaped graphs 91
5.3 Periodic hamiltonians and plumbing 96
5.4 Description of W up to the maximum: finishing graphs 96
A Appendix: compact symplectic 5t/(2) manifolds of dimension 4 .... 99
A.I A list of examples 99
A.2 Classification 101
B Appendix: 4 dimensional S manifolds with no invariant symplectic
form (examples) 104
B.I Equivariant plumbing on non simply connected graphs, examples 104
Contents 5
B.2 Generalisations Ill
V Equivariant cohomology and the Duistermaat Heckman theorems 113
1 Principal and universal bundles 114
1.1 Principal bundles 114
1.2 Universal bundles 114
2 The Borel construction and equivariant cohomology 119
2.1 The Borel construction 119
2.2 Equivariant cohomology 120
2.3 Generators for de Rham cohomology 121
2.4 Euler classes for fixed point free T actions 123
3 Equivariant cohomology and hamiltonian actions 125
3.1 Relationships between hamiltonian actions and equivariant co¬
homology 125
3.2 Variation of the reduced symplectic forms 126
4 Duistermmat Heckman with singularities 128
4.1 The simple situation 128
4.2 General case of a fixed submanifold of signature (2p, 2^) 129
4.3 Application: The Duistermaat Heckman problem at critical valuesl31
5 Localisation at fixed points 133
5.1 The support of a #*£T module 133
5.2 Supports of HftU), examples 134
5.3 The localisation theorem 136
6 The Duistermaat Heckman formula 139
6.1 The Duistermaat Heckman formula 139
6.2 Examples of applications 140
A Appendix: some algebraic topology 142
A.I The Thorn class of an oriented vector bundle 142
A.2 The Euler class of an oriented bundle, equivariant Euler class . . 143
A.3 The Gysin exact sequence 144
A.4 The cohomology of projective space 144
A.5 The Gysin homomorphism (case of an embedding) 144
A.6 The Gysin homomorphism: integration in the fibers 145
B Appendix: various notions of Euler classes 146
B.I The case of S bundles 147
B.2 Complex line bundles 148
VI Toric manifolds 151
1 The action of Tg and its subgroups onC 152
1.1 Nontrivial stabilizers 153
1.2 Subtori 153
1.3 Real and imaginary parts 154
2 Fans and toric varieties 154
2.1 Fans 154
2.2 Closing a fan, open subsets in C , toric varieties 156
6 Contents
3 Fans, symplectic reduction, convex polyhedra 162
3.1 The moment map for the Abaction 162
3.2 What is left from the T^ action 164
4 Properties of the toric manifolds Xy, 165
4.1 Compacity of X z 165
4.2 Topology of X% and classes of invariant symplectic forms .... 166
4.3 Integral polyhedra and invariant line bundles 167
4.4 The cohomology of X% 171
5 Complex toric surfaces 172
5.1 Graphs associated with dimension 2 fans 172
5.2 Interpretation of the m; 174
5.3 4 manifolds with hamiltonian T2 actions 176
References 177
|
any_adam_object | 1 |
author | Audin, Michèle 1954- |
author_GND | (DE-588)14151552X |
author_facet | Audin, Michèle 1954- |
author_role | aut |
author_sort | Audin, Michèle 1954- |
author_variant | m a ma |
building | Verbundindex |
bvnumber | BV004236402 |
callnumber-first | Q - Science |
callnumber-label | QA641 |
callnumber-raw | QA641 |
callnumber-search | QA641 |
callnumber-sort | QA 3641 |
callnumber-subject | QA - Mathematics |
classification_rvk | SK 340 SK 350 |
classification_tum | MAT 574f PHY 014f |
ctrlnum | (OCoLC)23140118 (DE-599)BVBBV004236402 |
dewey-full | 516.3/6 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 516 - Geometry |
dewey-raw | 516.3/6 |
dewey-search | 516.3/6 |
dewey-sort | 3516.3 16 |
dewey-tens | 510 - Mathematics |
discipline | Physik Mathematik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03079nam a2200745 cb4500</leader><controlfield tag="001">BV004236402</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20061212 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">910121s1991 gw d||| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3764326026</subfield><subfield code="9">3-7643-2602-6</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0817626026</subfield><subfield code="9">0-8176-2602-6</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)23140118</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV004236402</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="1" ind2=" "><subfield code="a">eng</subfield><subfield code="h">fre</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">DE</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-384</subfield><subfield code="a">DE-91G</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-824</subfield><subfield code="a">DE-29T</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-634</subfield><subfield code="a">DE-83</subfield><subfield code="a">DE-11</subfield><subfield code="a">DE-188</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA641</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">516.3/6</subfield><subfield code="2">20</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 340</subfield><subfield code="0">(DE-625)143232:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 350</subfield><subfield code="0">(DE-625)143233:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 574f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">PHY 014f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">58F05</subfield><subfield code="2">msc</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Audin, Michèle</subfield><subfield code="d">1954-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)14151552X</subfield><subfield code="4">aut</subfield></datafield><datafield tag="240" ind1="1" ind2="0"><subfield code="a">Opérations hamiltoniennes de tores sur les variétés symplectiques</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">The topology of torus actions on symplectic manifolds</subfield><subfield code="c">Michèle Audin</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Basel [u.a.]</subfield><subfield code="b">Birkhäuser</subfield><subfield code="c">1991</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">181 S.</subfield><subfield code="b">graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Progress in mathematics</subfield><subfield code="v">93</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Hamilton, systèmes de</subfield><subfield code="2">ram</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Variétés symplectiques</subfield><subfield code="2">ram</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hamiltonian systems</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Symplectic manifolds</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Algebraische Topologie</subfield><subfield code="0">(DE-588)4120861-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Lie-Gruppe</subfield><subfield code="0">(DE-588)4035695-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Torische Varietät</subfield><subfield code="0">(DE-588)4786945-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Torus</subfield><subfield code="0">(DE-588)4185738-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Topologie</subfield><subfield code="0">(DE-588)4060425-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Symplektische Mannigfaltigkeit</subfield><subfield code="0">(DE-588)4290704-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Hamilton-Operator</subfield><subfield code="0">(DE-588)4072278-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Symplektische Geometrie</subfield><subfield code="0">(DE-588)4194232-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Symplektische Geometrie</subfield><subfield code="0">(DE-588)4194232-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Topologie</subfield><subfield code="0">(DE-588)4060425-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Torus</subfield><subfield code="0">(DE-588)4185738-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Hamilton-Operator</subfield><subfield code="0">(DE-588)4072278-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="2"><subfield code="a">Symplektische Geometrie</subfield><subfield code="0">(DE-588)4194232-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Symplektische Mannigfaltigkeit</subfield><subfield code="0">(DE-588)4290704-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2="1"><subfield code="a">Torus</subfield><subfield code="0">(DE-588)4185738-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2="2"><subfield code="a">Lie-Gruppe</subfield><subfield code="0">(DE-588)4035695-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="3" ind2="0"><subfield code="a">Symplektische Geometrie</subfield><subfield code="0">(DE-588)4194232-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="3" ind2="1"><subfield code="a">Algebraische Topologie</subfield><subfield code="0">(DE-588)4120861-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="3" ind2="2"><subfield code="a">Torische Varietät</subfield><subfield code="0">(DE-588)4786945-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="3" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Progress in mathematics</subfield><subfield code="v">93</subfield><subfield code="w">(DE-604)BV000004120</subfield><subfield code="9">93</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HBZ Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=002635877&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-002635877</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV004236402 |
illustrated | Illustrated |
indexdate | 2024-07-09T16:10:13Z |
institution | BVB |
isbn | 3764326026 0817626026 |
language | English French |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-002635877 |
oclc_num | 23140118 |
open_access_boolean | |
owner | DE-12 DE-384 DE-91G DE-BY-TUM DE-703 DE-355 DE-BY-UBR DE-824 DE-29T DE-19 DE-BY-UBM DE-634 DE-83 DE-11 DE-188 |
owner_facet | DE-12 DE-384 DE-91G DE-BY-TUM DE-703 DE-355 DE-BY-UBR DE-824 DE-29T DE-19 DE-BY-UBM DE-634 DE-83 DE-11 DE-188 |
physical | 181 S. graph. Darst. |
publishDate | 1991 |
publishDateSearch | 1991 |
publishDateSort | 1991 |
publisher | Birkhäuser |
record_format | marc |
series | Progress in mathematics |
series2 | Progress in mathematics |
spelling | Audin, Michèle 1954- Verfasser (DE-588)14151552X aut Opérations hamiltoniennes de tores sur les variétés symplectiques The topology of torus actions on symplectic manifolds Michèle Audin Basel [u.a.] Birkhäuser 1991 181 S. graph. Darst. txt rdacontent n rdamedia nc rdacarrier Progress in mathematics 93 Hamilton, systèmes de ram Variétés symplectiques ram Hamiltonian systems Symplectic manifolds Algebraische Topologie (DE-588)4120861-4 gnd rswk-swf Lie-Gruppe (DE-588)4035695-4 gnd rswk-swf Torische Varietät (DE-588)4786945-8 gnd rswk-swf Torus (DE-588)4185738-0 gnd rswk-swf Topologie (DE-588)4060425-1 gnd rswk-swf Symplektische Mannigfaltigkeit (DE-588)4290704-4 gnd rswk-swf Hamilton-Operator (DE-588)4072278-8 gnd rswk-swf Symplektische Geometrie (DE-588)4194232-2 gnd rswk-swf Symplektische Geometrie (DE-588)4194232-2 s Topologie (DE-588)4060425-1 s DE-604 Torus (DE-588)4185738-0 s Hamilton-Operator (DE-588)4072278-8 s Symplektische Mannigfaltigkeit (DE-588)4290704-4 s Lie-Gruppe (DE-588)4035695-4 s Algebraische Topologie (DE-588)4120861-4 s Torische Varietät (DE-588)4786945-8 s 1\p DE-604 Progress in mathematics 93 (DE-604)BV000004120 93 HBZ Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=002635877&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Audin, Michèle 1954- The topology of torus actions on symplectic manifolds Progress in mathematics Hamilton, systèmes de ram Variétés symplectiques ram Hamiltonian systems Symplectic manifolds Algebraische Topologie (DE-588)4120861-4 gnd Lie-Gruppe (DE-588)4035695-4 gnd Torische Varietät (DE-588)4786945-8 gnd Torus (DE-588)4185738-0 gnd Topologie (DE-588)4060425-1 gnd Symplektische Mannigfaltigkeit (DE-588)4290704-4 gnd Hamilton-Operator (DE-588)4072278-8 gnd Symplektische Geometrie (DE-588)4194232-2 gnd |
subject_GND | (DE-588)4120861-4 (DE-588)4035695-4 (DE-588)4786945-8 (DE-588)4185738-0 (DE-588)4060425-1 (DE-588)4290704-4 (DE-588)4072278-8 (DE-588)4194232-2 |
title | The topology of torus actions on symplectic manifolds |
title_alt | Opérations hamiltoniennes de tores sur les variétés symplectiques |
title_auth | The topology of torus actions on symplectic manifolds |
title_exact_search | The topology of torus actions on symplectic manifolds |
title_full | The topology of torus actions on symplectic manifolds Michèle Audin |
title_fullStr | The topology of torus actions on symplectic manifolds Michèle Audin |
title_full_unstemmed | The topology of torus actions on symplectic manifolds Michèle Audin |
title_short | The topology of torus actions on symplectic manifolds |
title_sort | the topology of torus actions on symplectic manifolds |
topic | Hamilton, systèmes de ram Variétés symplectiques ram Hamiltonian systems Symplectic manifolds Algebraische Topologie (DE-588)4120861-4 gnd Lie-Gruppe (DE-588)4035695-4 gnd Torische Varietät (DE-588)4786945-8 gnd Torus (DE-588)4185738-0 gnd Topologie (DE-588)4060425-1 gnd Symplektische Mannigfaltigkeit (DE-588)4290704-4 gnd Hamilton-Operator (DE-588)4072278-8 gnd Symplektische Geometrie (DE-588)4194232-2 gnd |
topic_facet | Hamilton, systèmes de Variétés symplectiques Hamiltonian systems Symplectic manifolds Algebraische Topologie Lie-Gruppe Torische Varietät Torus Topologie Symplektische Mannigfaltigkeit Hamilton-Operator Symplektische Geometrie |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=002635877&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
volume_link | (DE-604)BV000004120 |
work_keys_str_mv | AT audinmichele operationshamiltoniennesdetoressurlesvarietessymplectiques AT audinmichele thetopologyoftorusactionsonsymplecticmanifolds |