Squid as experimental animals:
Gespeichert in:
Format: | Buch |
---|---|
Sprache: | English |
Veröffentlicht: |
New York u.a.
Plenum Press
1990
|
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | Literaturangaben |
Beschreibung: | XXXI, 516 S. Ill., graph. Darst. |
ISBN: | 0306435136 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV004140522 | ||
003 | DE-604 | ||
005 | 19930402 | ||
007 | t | ||
008 | 901112s1990 ad|| |||| 00||| engod | ||
020 | |a 0306435136 |9 0-306-43513-6 | ||
035 | |a (OCoLC)21116994 | ||
035 | |a (DE-599)BVBBV004140522 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-91G |a DE-188 | ||
050 | 0 | |a QL430.2 | |
082 | 0 | |a 594/.58 |2 20 | |
084 | |a BIO 655f |2 stub | ||
084 | |a BIO 770f |2 stub | ||
084 | |a BIO 781f |2 stub | ||
084 | |a BIO 858f |2 stub | ||
245 | 1 | 0 | |a Squid as experimental animals |c ed. by Daniel L. Gilbert ... |
264 | 1 | |a New York u.a. |b Plenum Press |c 1990 | |
300 | |a XXXI, 516 S. |b Ill., graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
500 | |a Literaturangaben | ||
650 | 4 | |a Animals, Laboratory | |
650 | 4 | |a Decapodiformes | |
650 | 4 | |a Nervous System | |
650 | 4 | |a Squids as laboratory animals | |
650 | 4 | |a Squids |x Cytology | |
650 | 4 | |a Squids |x Nervous system | |
650 | 0 | 7 | |a Neurobiologie |0 (DE-588)4041871-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Loligo |0 (DE-588)4168133-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Tierversuch |0 (DE-588)4060137-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Cytologie |0 (DE-588)4070177-3 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Loligo |0 (DE-588)4168133-2 |D s |
689 | 0 | 1 | |a Tierversuch |0 (DE-588)4060137-7 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Loligo |0 (DE-588)4168133-2 |D s |
689 | 1 | 1 | |a Neurobiologie |0 (DE-588)4041871-6 |D s |
689 | 1 | |5 DE-604 | |
689 | 2 | 0 | |a Loligo |0 (DE-588)4168133-2 |D s |
689 | 2 | 1 | |a Cytologie |0 (DE-588)4070177-3 |D s |
689 | 2 | |5 DE-604 | |
700 | 1 | |a Gilbert, Daniel L. |e Sonstige |4 oth | |
856 | 4 | 2 | |m HEBIS Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=002583351&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-002583351 |
Datensatz im Suchindex
_version_ | 1804118355496402944 |
---|---|
adam_text | SQUID AS
EXPERIMENTAL
ANIMALS
Edited by
Daniel L Gilbert and William J Adelman, Jr
National Institutes of Health
Bethesda, Maryland
and
John M Arnold
University of Hawaii
_ Honolulu, Hawaii
PLENUM PRESS • NEW YORK AND LONDON
xi
Contents
Abbreviations, Prefixes, and Suffixes
Abbreviations xxvii
Prefixes xxxi
Suffixes xxxi
PART I EVOLUTION, HISTORY, AND MAINTENANCE
Chapter 1
Evolution and Intelligence of the Cephalopods
JOHN M ARNOLD
1 Introduction 3
1 1 Intelligence and behavior 3
2 Evolution 4
2 1 Evolution and competition 5
2 2 Evolution of form 5
2 3 Evolution of function 5
3 Conclusion 7
References 7
Chapter 2
Natural History and Collection
WILLIAM C SUMMERS
1 Introduction 11
1 1 The ecological dichotomy 11
1 2 Terminology 12
121 Terminology of the squid, Loligo pealei 13
13A functional taxonomy 15
1 4 Biological strategies 16
1 5 Distribution and fisheries 18
1 6 Selection and handling 20
1 7 Opportunities 23
References 23
xii Contents
Chapter 3
Lol-i-go and Far Away: A Consideration of the Establishment of
the Species Designation Loligo pealei
FREDERICK A ALDRICH
1 Introduction 27
2 Vernacular nomenclature 32
3 An afterword 33
References 34
Chapter 4
Maintenance, Rearing, and Culture of Teuthoid and Sepioid Squids
ROGER T HANLON
1 Introduction 35
2 Terminology 36
3 Anatomical and behavioral traits relevant to laboratory handling 37
3 1 Skin 37
3 2 Locomotor habits 38
3 3 Sensory systems 39
3 4 Mode of feeding 41
3 5 Egg size and hatchling behavior 41
3 6 Social behavior 41
4 Water quality and closed vs open seawater systems 43
5 Capture and transport of eggs, juveniles and adults 45
5 1 Egg care 45
5 2 Juveniles and adults 46
6 Maintenance of wild-caught juveniles and adults 48
6 1 Tank configurations 48
6 2 Behavior, feeding and growth 50
7 Rearing and culture 52
7 1 Loligo spp ~7 52
7 2 Sepioteuthis lessoniana 54
7 3 Sepia officinalis 55
8 Mortality and disease 57
9 Summary 58
10 Future considerations 58
References 59
Contents xiii
PART II MATING BEHAVIOR AND EMBRYOLOGY
Chapter 5
Squid Mating Behavior
JOHN M ARNOLD
1 Introduction 65
2 Reproductive anatomy 65
2 1 Male reproductive system 66
2 2 Female reproductive system 67
2 3 Mating behavior 69
2 4 Copulation 71
2 5 Egg deposition 72
References 74
Chapter 6
Embryonic Development of the Squid
JOHN M ARNOLD
1 Introduction 77
2 Handling techniques 77
3 Stages of normal cephalopod development 81
3 1 Fertilization and meiosis 85
3 2 Cleavage 85
3 3 Establishment of the germinal layers 86
3 4 Completion of the cellulation of the egg surface 86
3 5 Organogenesis 88
References 89
PART m NEURAL MEMBRANES
Chapter 7
Electrophysiology and Biophysics of the Squid Giant Axon
WILLIAM J ADELMAN, JR and DANIEL L GILBERT
1 Introduction 93
1 1 Overall view of nerve function 94
2 The giant axon 94
3 Elcctrophysiology of the giant axon 95
3 1 Intracellular recording 96
3 2 From current to voltage clamp 96
3 3 Microinjection, internal dialysis, and internal perfusion 97
3 4 Chemical blockers of specific ionic conductances 97
xiv Contents
3 5 Membrane noise 98
3 6 Single channel currents 99
3 7 Ion channel gating currents 100
3 8 Gating currents indicate molecular conformational changes 101
4 The giant axon preparation 101
4 1 Location of the giant axon in the squid 102
4 2 Preparations for dissecting the mantle nerves 103
4 3 Dissecting the mantle nerves 105
4 4 Storing the mantle nerves 107
4 5 Isolation of the giant axon 108
4 6 Physiological saline for the giant axon Ill
5 Electrophysiological methods 112
5 1 Whole axon voltage clamp 112
511 Axon preparation for voltage clamping 113
512 Voltage clamp chamber and electrodes 114
513 Internal perfusion and electrode placement 115
5131 Piggy-back technique 115
5132 Two internal electrode technique 115
5 2 Forcing functions 118
521 Square waves 119
522 Sinusoidal forcing functions 121
523 Other forms of forcing functions 122
5 3 Data acquisition 123
531 Storage of voltage clamp data 124
6 Conclusion 124
References 125
Chapter 8
Internal Dialysis in the Squid Giant Axon
LORIN J MULLINS and F J BRINLEY, JR
1 Historical 133
2 Materials for internal dialysis 137
2 1 Evaluation_of porosity to low molecular weight substances 139
211 Porous acetate_capillaries 139
212 Hollow cellulose fibers 140
3 Solutions for internal dialysis 140
4 Theoretical analysis of diffusion within the porous capillary and
axoplasm 143
4 1 Efflux experiments 143
411 End effects 144
4 2 Influx experiments 144
5 Design of dialysis chambers 146
5 1 Efflux chamber 146
5 2 Special precautions to remove ATP from axoplasm 148
5 3 Influx chamber 149
6 Hardware for control of internal dialysis 150
References 151
Contents
Chapter 9
The Cut-Open Axon Technique
FRANCISCO BEZANILLA and CAROL VANDENBERG
1 Introduction 153
2 The cut-open axon technique for small population of channels 153
3 The cut-open axon technique for single channel recording 154
4 Method and results 154
4 1 Experimental set-up 154
4 2 Experimental procedure 156
4 3 Experimental results 157
References 158
Chapter 10
Optical Measurements on Squid Axons
LAWRENCE B COHEN, DAVID LANDOWNE, and BRIAN M SALZBERG
1 Introduction 161
2 Optical studies of structural changes in axons 162
2 1 Light scattering 162
2 2 Birefringence 163
2 3 Optical activity 164
3 Screening for larger optical signals for monitoring activity 165
4 Optical determination of the series resistance in Loligo 166
5 Fast measurements of potentiometric probe response 168
References 169
Chapter 11
The Preparation of the Squid Giant Synapse for Electrophysiological
Investigation
ELIS F STANLEY
1 Introduction 171
1 1 The stellate ganglion 171
1 2 The giant synapse 172
2 The giant synapse as an experimental preparation 173
2 1 Experimental advantages of the giant synapse preparation 174
211 Large size of the pre- and postsynaptic giant axons
(Young, 1939) 174
212 Fast transmitting synapse 174
213 High release capacity 174
214 Rapid exchange of external solutions 174
215 Facilitation and depression 174
216 Analysis of ionic currents in a nerve terminal 175
217 Single presynaptic input-output relations 175
Contents
218 Nerve terminal capacitance 175
2 2 Experimental disadvantages of the giant synapse 175
221 Unidentified transmitter substance 175
222 Miniature excitatory postsynaptic potentials
(MEPPs) 175
223 More than one presynaptic axon 176
224 The presynaptic giant projects multiple nerve
terminals 176
225 Diffusion barrier 177
226 Large size of the pre- and postsynaptic giant axons 177
227 Variability 177
228 Oxygen sensitivity 177
229 Depletion of transmitter release 177
3 Dissection, mounting, and experimentation 178
3 1 Squid 178
3 2 The basic stellate ganglion preparation 179
321 Coarse dissection 179
322 Removal of the stellate ganglion 180
323 Fine dissection 181
3 3 The stellate ganglion with aortic perfusion 181
331 The blood supply of the stellate ganglion 181
332 Coarse dissection with cannulation of the artery 182
333 Fine dissection of the perfused ganglion 183
3 4 Experimental considerations for studies on the stellate
ganglion 183
341 Artificial sea water (ASW) 183
342 Oxygen 184
343 Recording from ihe presynaptic nerve terminal 185
3431 Selection of synapses 185
3432 Movement 185
3433 Micropipette impalement 186
344 Correlation of pre- and postsynaptic events 186
345- Voltage clamp techniques 186
3451 Equipment 186
3452 Current passing electrodes 187
3453 Voltage clamp limitations 187
346 Morphology 187
347 Pharmacology 187
348 Temperature 190
4 Conclusion 190
References 190
Contents xvii
PART IV CELL BIOLOGY
Chapter 12
Tissue Culture of Squid Neurons, Glia, and Muscle Cells
ROBERT V RICE, RUTHANNE MUELLER, and
WILLIAM J ADELMAN, JR
1 Introduction 195
1 1 Invertebrate tissue culture 196
1 2 Neurons, glia, and muscle cells 196
2 Culture strategies 196
2 1 Reduced carbon sources 196
2 2 Osmolality of the media 197
2 3 Ionic composition of the media 197
2 4 Incubation temperatures 197
2 5 Modified Eagle medium 197
2 6 Fetal bovine serum 197
3 Procedure 198
3 1 Manipulation of eggs 198 ,
3 2 Preparation of embryos 198
3 3 Embryo dissection 199
3 4 Cell dispersion and plating out 199
35A typical dispersion and plating out protocol: 200
3 6 Cryopreservation 200
3 7 Media * 201
4 Cell culture and growth 201
4 1 Effects of media on growth 201
4 2 Effects of aggregates, explants, and conditioned media on
growth 201
4 3 Effects of carbohydrates on growth 202
4 4 Effects of temperature on growth 202
5 Cell identification 202
5 1 Neuron identification by tetanus toxin binding 203
5 2 Glial cell identification 203
5 3 Cell imaging; photography, and video processing 203
6 Characteristics of cultured cells 205
6 1 Morphology of soma 205
6 2 Are fibroblasts present in the cultures? 205
6 3 Muscle cells 205
6 4 Distinguishing neurons from glia 206
6 5 Bipolar and pyramidal neurons 209
6 6 Characteristics of cultured bipolar cells 209
6 7 Muscle cells 210
7 Conclusions 210
References 210
xviii Contents
Chapter 13
Squid Optic Lobe Synaptosomes: Structure and Function of Isolated
Synapses
ROCHELLE S COHEN, HARISH C PANT, and HAROLD GAINER
1 Introduction 213
2 Subcellular fractionation of squid optic lobe synaptosomes 214
2 1 Preparation of synaptosomes 214
2 2 Preparation of synaptosomal plasma membranes 217
2 3 Preparation of synaptic vesicles 219
3 Structure of squid optic lobe synaptosomes 220
3 1 Morphological characterization 220
3 2 Preparation of tissue for electron microscopy 221
4 Proteins in the squid optic lobe synaptosome and synaptosomal
plasma membrane fractions 223
4 1 Polypeptide composition 223
4 2 Protein phosphorylation 226
4 3 Proteases 227
5 Squid optic lobe synaptosomes as model cholinergic endings 227
6 Localization and uptake of other putative neurotransmitters and
neuropeptides in squid optic lobe nerve terminals 229
References 230
Chapter 14
The Cytoskeleton of the Squid Giant Axon
ANTHONY BROWN and RAYMOND J LASEK
1 Introduction 235
2 The squid 236
3 The anatomy-and_development of the giant nerve fiber 236
4 Dissection of the giant axons- 239
4 1 Fine-cleaning the giant axons 239
5 Handling the giant axons 240
6 Methods for obtaining axoplasm from the giant axons 240
6 1 Extrusion 241
6 2 Slitting 244
6 3 Cannulation 246
7 How pure is axoplasm isolated from the giant axon? 246
7 1 Extrusion 246
7 2 Slitting 247
7 3 Cannulation 247
8 Handling axoplasm 247
9 The composition of axoplasm 248
9 1 Ions and small molecules 248
9 2 Macromolecules 250
9 3 Calcium and magnesium in axoplasm 250
Contents xix
10 Artificial axoplasm solutions 252
10 1 Buffer P 252
10 2 Buffer X 252
11 The solubility and stability of axoplasm 255
11 1 Salt and pH 255
11 2 Calcium-dependent proteolysis 256
12 Preparation of axoplasm and sheath for SDS PAGE technique 257
13 Preparation of axoplasm for electron microscopy 257
13 1 A general fixation protocol 257
13 2 Preservation of microfilaments 258
13 3 Fixative penetration 259
13 4 Removing the axon sheath 259
13 5 Cannulation 260
13 6 Negative staining 260
14 The organization of the cytoskeleton 261
14 1 Longitudinal organization 261
14 2 Helicity 261
14 3 Radial organization 263
15 The cortical cytoskeleton 263
15 1 Axoplasm is attached to the plasma membrane 263
15 2 Internal perfusion of axons 264
15 3 Protein composition of the cortical cytoskeleton 265
15 4 Architecture of the cortical cytoskeleton 266
15 5 The cortical cytoskeleton and membrane excitability 267
16 The inner cytoskeleton 269
17 Neurofilaments in axoplasm 269
17 1 Purification of squid neurofilaments 270
17 2 Polypeptide composition of squid neurofilaments 270
17 3 Phosphorylation of squid neurofilaments 271
17 4 Calcium-dependent proteolysis 272
17 5 The structure of the squid neurofilament 273
18 Microtubules in axoplasm 274
18 1 Purification of microtubules 275
18 2 Video-enhanced contrast light microscopy of axoplasm 275
18 3 Microtubule-associated proteins in axoplasm 276
19 Microfilaments in axoplasm 277
19 1 Microfilaments are_numerous in the inner cytoskeleton 277
19 2 Two classes of microfilaments in the inner cytoskeleton 278
19 3 Organization of microfilaments in the inner cytoskeleton 278
19 4 Myosin from squid brain 279
20 Studying the stability of the cytoskeleton 279
20 1 Assembly dynamics of cytoskeletal polymers in axons 279
20 2 The axoplasmic ghost 281
20 3 Monomer-polymer equilibria in axoplasm 283
21 Mechanical studies on axoplasm 284
21 1 Axoplasm has mechanical integrity 284
21 2 Axoplasm is anisotropic 285
21 3 The macroscopic mechanical properties of axoplasm 285
21 4 The stretch apparatus 287
21 5 Stretch analysis 290
XX Contents
21 6 Interpretation of the stretch profile 291
21 7 A mechanical model 292
21 8 The structural basis for elasticity and flow 293
21 9 Polymer sliding in axons 294
22 Summary 295
References 295
Chapter 15
Studying Axoplasmic Transport by Video Microscopy and Using the
Squid Giant Axon as a Model System
DIETER G WEISS, MONICA A MEYER, and GEORGE M LANGFORD
1 Present status of the results obtained by the use of intact axons
and membrane-free or cell-free preparations 303
1 1 Studies on intact axons 303
1 2 Studies on native microtubules and organelles 304
1 3 Studies on purified components and reconstituted
preparations 305
2 Gross dissection of the squid giant axon 307
3 Fine dissection of the squid giant axon 307
4 Preparation of the axon for light microscopy 308
4 1 Slides and holders 308
4 2 Solutions 309
4 3 Intact axons 309
4 4 Extrusion of axoplasm 310
4 5 Homogenization 311
5 Light microscopy 311
6 Preparation of the axoplasm for electron microscopy 314
6 1 Negative contrast electron microscopy 314
6 2 Other forms of electron microscopy 315
7 Conclusion 315
References 316
Chapter 16 —
Lipid Metabolism In The Squid Nervous System
ROBERT M GOULD and MARIO ALBERGHINA
1 Introduction 323
2 Historical perspective 324
2 1 Lipid composition 324
2 2 Lipid metabolism 328
2 3 Lipid enzymes 329
3 Tissue preparations 331
3 1 The giant axon 331
3 2 Extruding axoplasm 332
321 Axoplasmic subtractions 333
Contents xxi
3 3 Giant fiber lobe (GFL) 335
3 4 Retinal fibers 336
341 Retinal fiber axolemma 336
3 5 Optic lobe 337 N
3 6 Fin nerves 337
3 7 Photoreceptor membranes 337
3 8 Giant synapse and pallial nerve 338
4 Studying lipid metabolism 338
4 1 The giant axon 338
411 Incubation of giant axons 338
4111 Procedures 338
4112 Experimental considerations 340
412 Injection of giant axons 340
4121 Procedures 340
4122 Experimental considerations 341
413 Axonal transport of lipid metabolizing enzymes 341
4131 Procedure 342
4132 Experimental considerations 343
4 2 Extruded axoplasm 344
421 Procedures 344
422 Experimental considerations 344
423 Axoplasmic subtractions 345
4231 Procedures 345
4232 Experimental considerations 345
4 3 Giant fiber lobe, retinal fibers, retinal fiber axolemma, optic
lobe, optic lobe synaptosomes, fin nerve, retina and
photoreceptor membranes 346
431 Procedures i 346
432 Experimental considerations 347
5 Useful lipid techniques 347
5 1 Precursor selection and lipid product identification 347
5 2 Enzymes of lipid metabolism 350
521 Phosphatidylinositol synthase (CDP-diacylglycerol:
myo-inositol transferase) (EC 278 11) 351
522 1,2-Diacylglycerol kinase (ATP:diacylglycerol
- phosphotransferase) (EC 271 -) 351
523 Phosphatidylinositol kinase (EC 271 67) 351
524 Phospholipase Aj (EC 311 4) 352
525 Acyl-CoA: l-acyl-s/i-glycero-3-phosphocholine
acyltransferase (EC 231 23) 352
526 Serine base-exchange 353
527 Phospholipid transfer proteins 353
528 Octopine dehydrogenase (EC 151 11); procedure
from Dr Michael Dowdall, (1989) Univ of
Nottingham 353
5 3 Localizing radioactive lipids in squid neural tissues by
quantitative EM autoradiography 354
531 Lipid metabolism in squid axoplasm 355
532 Inositol-lipid metabolism by the squid giant synapse 359
6 Future directions 360
xxli Contents
7 Appendix 362
7 1 Solutions and media 362
7 2 Chromatography solvents 362
721 Solvent 1 362
7211 Rf values for solvent 1 362
722 Solvent 2 362
7221 Rf values for solvent 2 363
723 Solvent 3 363
7231 Rf values for solvent 3 363
724 Solvent 4 363
7241 Rf values for solvent 4 363
References 364
PART V SENSORY SYSTEMS
Chapter 17
Structure and Function of the Squid Eye
HELEN R SAIBIL
1 Introduction 371
1 1 The cephalopod camera eye 371
2 Visual information produced by the squid eye 372
2 1 Spatial resolution and sensitivity 372
2 2 Polarization sensitivity 372
221 Photoreceptor membrane and photopigment
orientation 372
222 Contrast enhancement 373
3 The squid eye as an experimental preparation 373
3 1 Disadvantages 373
311 Delicate 373
312 Electrophysiology difficult 374
313 Spectral overlap 374
3 2 Advantages Tr- - 374
321 Large numbers and large eyes 374
322 Simple retinal neuroanatomy 374
323 Pure photoreceptor membrane preparation 374
324 Photostable metarhodopsin 375
3 3 Protocol for dissection of the eye 375
4 The retina 375
4 1 Cellular organization 375
411 Fixation methods for the visual cells 376
4111 Protocol 379
4112 Quality of fixation 379
412 Neuroanatomy 381
4 2 Intracellular transport 382
421 Pigment granule migration 382
422 Retinoid transport and membrane turnover 382
Contents xxiii
4 3 Electrophysiology 382
431 Electroretinogram (ERG) 382
432 Photoreceptor potentials and ionic mechanisms 383
433 Optic nerve responses 383
5 Molecular organization of squid photoreceptors 384
5 1 Isolation of the microvillar membranes 384
511 Preparation of the retinas 384
512 Protocol for isolation of the membranes 384
5121 Method of Saibil (adapted from Saibil
and Hewat, 1987 and Baer and Saibil,
1988) 384
5122 Method of Vandenberg (Vandenberg,
1982; Vandenberg and Montal, 1984c) 386
513 Lipid and protein composition of the preparation 387
514 Measurement of rhodopsin concentration 387
5 2 Purification of retinal binding proteins 387
521 Rhodopsin 387
5211 Method of Nashima, Mitsudo and Kito
(Nashima et al , 1979) 388
5212 Method of Vandenberg (Vandenberg,
1982; Vandenberg and Montal, 1984c) 388
522 Retinochrome 389
5221 Purification method of Hara and Hara
(Hara and Hara, 1982) 389
523 Retinal binding protein 390
5 3 Microvillus structure 390
531 X-ray diffraction 390
532 Electron microscope image analysis 391
533 Rapid freezing, freeze etching and freeze
substitution EM 391
5 4 Assays for rhodopsin-activated signalling enzymes 392
541 GTP-binding proteins 392
542 Phosphoinositides 393
543 Cyclic guanosine monophosphate (cGMP) 393
6 Conclusions 393
6 1 Signal transduction 393
6 2 Membrane-cytoskeleton and membrane-membrane
interactions 393
References 394
Chapter 18
Development of the Squid s Visual System
I A MEINERTZHAGEN
1 Introduction 399
2 Development of the eye 399
2 1 Formation of an eye vesicle 401
2 2 Development of the lens 402
xxiv Contents
2 3 Development of the iris 402
2 4 Development of the cornea 403
2 5 Experimental embryology of the eye 403
2 6 Retinal differentiation 405
261 EM fixation for squid retina 406
2611 Method of Cohen (1973a) 406
2612 Method of Yamamoto (1985) 406
262 Electrophysiological differentiation 406
2621 Recording ERG and optic nerve activity
in squid 406
263 Golgi impregnation of the retina 407
3 Development of the optic lobe 408
3 1 Morphogenetic dependence of the optic lobe upon eye
development 408
3 2 Developmental origins of the optic lobe 410
321 Culture conditions 410
3 3 Fiber tracts 411
331 Nauta degeneration method 411
3 4 Interneurons 412
341 Silver impregnation and staining methods for
cephalopod tissue 412
3411 Cajal s block silver method 412
3412 Golgi-Kopsch method 412
3413 Golgi-rapid method 413
342 Other methods to stain pathways 413
3421 HRP labeling method 413
3422 Cobalt backfills 413
3 5 Synaptic organization 414
4 Growth of the visual system 414
4 1 Nuclear counts 415
4 2 Eye growth 415
4 3 Brain growth 415
References 416
Chapter 19
The Statocysts of Squid - _____
BERND U BUDELMANN
1 Introduction 421
2 Short summary of research on cephalopod statocysts 422
3 Dissection of the squid statocyst 423
3 1 Statocyst operations on living squid 426
4 Structure and function of the squid statocyst 427
4 1 The receptor cells 427
4 2 The gravity receptor system 428
421 Statolith growth rings and aging 429
4 3 The angular acceleration receptor system 429
431 Anticristae 433
Contents XXV
4 4 Ciliated cells 433
4 5 KOlliker s canal 433
5 Central projections of the statocyst sensory epilhelia 434
6 Compensatory eye and head movements 434
6 1 Counterrolling of the eyes 434
6 2 Post-rotatory nystagmus 435
6 3 Compensatory head movements 435
7 Conclusion 436
References 436
PART VI INTEGRATED SYSTEMS
Chapter 20
Gas Transport in the Blood
CHARLOTTE P MANGUM
1 Introduction 443
2 Respiratory properties of cephalopod bloods * 444
2 1 Squid 444
2 2 Other cephalopod Hcs 449
221 Gas transport 449
222 pH dependence: a special case 451
3 Molecular properties of cephalopod Hcs 452
3 1 Biosynthesis 452
3 2 Molecular structure 453
4 Performance of the oxygen transport system 456
4 1 Oxygen transport in Loligo pealei 456
4 2 Oxygen transport in octopus 457
4 3 Oxygen transport in Nautilus pompilius 459
4 4 Gas transport in Sepia officinalis 459
5 Methods of investigating gas transport 460
5 1 Measurement of blood gases 460
~ 5 2r—HC02 equilibrium measurements 461
521 Tonometry 462
6 Summary and conclusions 463
References 464
Chapter 21
An Organophosphorus Detoxifying Enzyme Unique to Squid
FRANCIS C G HOSKIN
1 Introduction 469
2 Methods 471
3 Results and Discussion 475
References 478
xxvl Contents
Chapter 22
Squid as Elite Athletes: Locomotory, Respiratory, and Circulatory
Integration
RON O DOR, H O PORTNER, and R E SHADWICK
1 Introduction 481
2 Physiology in active squid 481
2 1 Anesthetics 482
2 2 Cannulation 483
2 3 Swim-tunnels 484
2 4 Ultrasonic transducer-transmitters 487
3 Respiratory physiology 487
3 1 Ventilatory flow 488
3 2 Ventilatory regulation 489
4 Circulatory physiology 491
4 1 Cellular elements 491
4 2 Oxygen carrier pigment 493
4 3 Circulatory system 494
4 4 Circulatory regulation 497
4 5 Auxiliary systems 498
References 499
Index 505
|
any_adam_object | 1 |
building | Verbundindex |
bvnumber | BV004140522 |
callnumber-first | Q - Science |
callnumber-label | QL430 |
callnumber-raw | QL430.2 |
callnumber-search | QL430.2 |
callnumber-sort | QL 3430.2 |
callnumber-subject | QL - Zoology |
classification_tum | BIO 655f BIO 770f BIO 781f BIO 858f |
ctrlnum | (OCoLC)21116994 (DE-599)BVBBV004140522 |
dewey-full | 594/.58 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 594 - Mollusca and Molluscoidea |
dewey-raw | 594/.58 |
dewey-search | 594/.58 |
dewey-sort | 3594 258 |
dewey-tens | 590 - Animals |
discipline | Biologie |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02010nam a2200577 c 4500</leader><controlfield tag="001">BV004140522</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">19930402 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">901112s1990 ad|| |||| 00||| engod</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0306435136</subfield><subfield code="9">0-306-43513-6</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)21116994</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV004140522</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-91G</subfield><subfield code="a">DE-188</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QL430.2</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">594/.58</subfield><subfield code="2">20</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">BIO 655f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">BIO 770f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">BIO 781f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">BIO 858f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Squid as experimental animals</subfield><subfield code="c">ed. by Daniel L. Gilbert ...</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York u.a.</subfield><subfield code="b">Plenum Press</subfield><subfield code="c">1990</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XXXI, 516 S.</subfield><subfield code="b">Ill., graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Literaturangaben</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Animals, Laboratory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Decapodiformes</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nervous System</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Squids as laboratory animals</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Squids</subfield><subfield code="x">Cytology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Squids</subfield><subfield code="x">Nervous system</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Neurobiologie</subfield><subfield code="0">(DE-588)4041871-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Loligo</subfield><subfield code="0">(DE-588)4168133-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Tierversuch</subfield><subfield code="0">(DE-588)4060137-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Cytologie</subfield><subfield code="0">(DE-588)4070177-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Loligo</subfield><subfield code="0">(DE-588)4168133-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Tierversuch</subfield><subfield code="0">(DE-588)4060137-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Loligo</subfield><subfield code="0">(DE-588)4168133-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Neurobiologie</subfield><subfield code="0">(DE-588)4041871-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Loligo</subfield><subfield code="0">(DE-588)4168133-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2="1"><subfield code="a">Cytologie</subfield><subfield code="0">(DE-588)4070177-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gilbert, Daniel L.</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HEBIS Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=002583351&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-002583351</subfield></datafield></record></collection> |
id | DE-604.BV004140522 |
illustrated | Illustrated |
indexdate | 2024-07-09T16:08:59Z |
institution | BVB |
isbn | 0306435136 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-002583351 |
oclc_num | 21116994 |
open_access_boolean | |
owner | DE-12 DE-91G DE-BY-TUM DE-188 |
owner_facet | DE-12 DE-91G DE-BY-TUM DE-188 |
physical | XXXI, 516 S. Ill., graph. Darst. |
publishDate | 1990 |
publishDateSearch | 1990 |
publishDateSort | 1990 |
publisher | Plenum Press |
record_format | marc |
spelling | Squid as experimental animals ed. by Daniel L. Gilbert ... New York u.a. Plenum Press 1990 XXXI, 516 S. Ill., graph. Darst. txt rdacontent n rdamedia nc rdacarrier Literaturangaben Animals, Laboratory Decapodiformes Nervous System Squids as laboratory animals Squids Cytology Squids Nervous system Neurobiologie (DE-588)4041871-6 gnd rswk-swf Loligo (DE-588)4168133-2 gnd rswk-swf Tierversuch (DE-588)4060137-7 gnd rswk-swf Cytologie (DE-588)4070177-3 gnd rswk-swf Loligo (DE-588)4168133-2 s Tierversuch (DE-588)4060137-7 s DE-604 Neurobiologie (DE-588)4041871-6 s Cytologie (DE-588)4070177-3 s Gilbert, Daniel L. Sonstige oth HEBIS Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=002583351&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Squid as experimental animals Animals, Laboratory Decapodiformes Nervous System Squids as laboratory animals Squids Cytology Squids Nervous system Neurobiologie (DE-588)4041871-6 gnd Loligo (DE-588)4168133-2 gnd Tierversuch (DE-588)4060137-7 gnd Cytologie (DE-588)4070177-3 gnd |
subject_GND | (DE-588)4041871-6 (DE-588)4168133-2 (DE-588)4060137-7 (DE-588)4070177-3 |
title | Squid as experimental animals |
title_auth | Squid as experimental animals |
title_exact_search | Squid as experimental animals |
title_full | Squid as experimental animals ed. by Daniel L. Gilbert ... |
title_fullStr | Squid as experimental animals ed. by Daniel L. Gilbert ... |
title_full_unstemmed | Squid as experimental animals ed. by Daniel L. Gilbert ... |
title_short | Squid as experimental animals |
title_sort | squid as experimental animals |
topic | Animals, Laboratory Decapodiformes Nervous System Squids as laboratory animals Squids Cytology Squids Nervous system Neurobiologie (DE-588)4041871-6 gnd Loligo (DE-588)4168133-2 gnd Tierversuch (DE-588)4060137-7 gnd Cytologie (DE-588)4070177-3 gnd |
topic_facet | Animals, Laboratory Decapodiformes Nervous System Squids as laboratory animals Squids Cytology Squids Nervous system Neurobiologie Loligo Tierversuch Cytologie |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=002583351&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT gilbertdaniell squidasexperimentalanimals |