Theory of group representations and applications:
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Warszawa
Polish Scientific Publ.
1980
|
Ausgabe: | 2. rev. ed. |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | XIX, 717 S. |
ISBN: | 8301027169 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV003635732 | ||
003 | DE-604 | ||
005 | 20240812 | ||
007 | t | ||
008 | 900725s1980 |||| 00||| eng d | ||
020 | |a 8301027169 |9 83-01-02716-9 | ||
035 | |a (OCoLC)168932416 | ||
035 | |a (DE-599)BVBBV003635732 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-355 |a DE-824 |a DE-29T |a DE-19 |a DE-83 | ||
084 | |a SK 260 |0 (DE-625)143227: |2 rvk | ||
084 | |a UK 3000 |0 (DE-625)145799: |2 rvk | ||
084 | |a 20Cxx |2 msc | ||
100 | 1 | |a Barut, Asim O. |d 1926-1994 |e Verfasser |0 (DE-588)143274074 |4 aut | |
245 | 1 | 0 | |a Theory of group representations and applications |c Asim O. Barut ; Ryszard Raczka |
250 | |a 2. rev. ed. | ||
264 | 1 | |a Warszawa |b Polish Scientific Publ. |c 1980 | |
300 | |a XIX, 717 S. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
650 | 7 | |a Fizyka matematyczna |2 jhpk | |
650 | 7 | |a Reprezentacje grup |2 jhpk | |
650 | 0 | 7 | |a Darstellung |g Mathematik |0 (DE-588)4128289-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Gruppentheorie |0 (DE-588)4072157-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Darstellungstheorie |0 (DE-588)4148816-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Gruppe |g Mathematik |0 (DE-588)4022379-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Anwendung |0 (DE-588)4196864-5 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Gruppe |g Mathematik |0 (DE-588)4022379-6 |D s |
689 | 0 | 1 | |a Anwendung |0 (DE-588)4196864-5 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Gruppentheorie |0 (DE-588)4072157-7 |D s |
689 | 1 | 1 | |a Darstellungstheorie |0 (DE-588)4148816-7 |D s |
689 | 1 | 2 | |a Anwendung |0 (DE-588)4196864-5 |D s |
689 | 1 | |5 DE-604 | |
689 | 2 | 0 | |a Gruppe |g Mathematik |0 (DE-588)4022379-6 |D s |
689 | 2 | |8 1\p |5 DE-604 | |
689 | 3 | 0 | |a Darstellung |g Mathematik |0 (DE-588)4128289-9 |D s |
689 | 3 | |8 2\p |5 DE-604 | |
700 | 1 | |a Rączka, Ryszard |d 1931-1996 |e Verfasser |0 (DE-588)1053302282 |4 aut | |
856 | 4 | 2 | |m HBZ Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=002316289&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-002316289 |
Datensatz im Suchindex
_version_ | 1807228806683951104 |
---|---|
adam_text |
Contents
Preface VII
Outline of the Book XV
Notations XIX
Chapter 1
Lie Algebras
§ 1. Basic Concepts and General Properties 1
§ 2. Solvable, Nilpotent, Semisimple and Simple Lie Algebras . 10
§3. The Structure of Lie Algebras 17
§ 4. Classification of Simple, Complex Lie Algebras 20
§ 5. Classification of Simple, Real Lie Algebras 29
§ 6. The Gauss, Cartan and Iwasawa Decompositions 37
§ 7. An Application. On Unification of the Poincare" Algebra and Internal
Symmetry Algebra 43
§ 8. Contraction of Lie Algebras 44
§ 9. Comments and Supplements 46
§ 10. Exercises 48
Chapter 2
Topological Groups
§ 1. Topological Spaces 52
§ 2. Topological Groups 61
§ 3. The Haar Measure 67
§ 4. Comments and Supplements 70
§ 5. Exercises ' 71
Chapter 3
Lie Groups
§ 1. Differentiable Manifolds 75
§ 2. Lie Groups 81
§ 3. The Lie Algebra of a Lie Group • 85
§ 4. The Direct and Semidirect Products 95
§ 5. Levi Malcev Decomposition 98
§ 6. Gauss, Cartan, Iwasawa and Bruhat Global Decompositions . 100
§ 7. Classification of Simple Lie Groups 106
§ 8. Structure of Compact Lie Groups 108
IX
X CONTENTS
§ 9. Invariant Metric and Invariant Measure on Lie Groups 109
§ 10. Comments and Supplements Ill
§ 11. Exercises 114
Chapter 4
Homogeneous and Symmetric Spaces
§ 1. Homogeneous Spaces 123
§ 2. Symmetric Spaces 124
§ 3P Invariant and Quasi Invariant Measures on Homogeneous Spaces 128
§ 4. Comments and Supplements 132
§ 5. Exercises 132
Chapter 5
Group Representations
§ 1. Basic Concepts 134
§ 2. Equivalence of Representations 139
§ 3. Irreducibility and Reducibility 141
§ 4. Cyclic Representations 145
§ 5. Tensor Product of Representations 147
§6. Direct Integral Decomposition of Unitary Representations . 150
§ 7. Comments and Supplements 156
§ 8. Exercises
Chapter 6
Representations of Commutative Groups
§ 1. Irreducible Representations and Characters 159
§ 2. Stone and SNAG Theorems 160
§ 3. Comments and Supplements 163
§ 4. Exercises 164
Chapter 7
Representations of Compact Groups
§ 1. Basic Properties of Representations of Compact Groups 166
§ 2. Peter Weyl and Weyl Approximation Theorems 172
§ 3. Projection Operators and Irreducible Representations 177
§ 4. Applications 179
§ 5. Representations of Finite Groups 186
§ 6. Comments and Supplements 195
§ 7. Exercises . 197
Chapter 8
Finite Dimensional Representations of Lie Groups
§ 1. General Properties of Representations of Solvable and Semisimple
Lie Groups 199
CONTENTS XI
§ 2. Induced Representations of Lie Groups 205
§ 3. The Representations of GL(n, C), GL(«, R), U(p, q), V(n), SL(n, C),
SL(n, R), SU(p, q), and SU(«) 213
§ 4. The Representations of the Symplectic Groups Sp(w, C), Sp(n, R)
and Sp(«) 217
§ 5. The Representations of Orthogonal Groups SO(«,C),SO(/7, q),SO*(n),
and SO(«) 219
§ 6. The Fundamental Representations 223
§ 7. Representations of Arbitrary Lie Groups 225
§ 8. Further Results and Comments 227
§ 9. Exercises 238
Chapter 9
Tensor Operators, Enveloping Algebras and Enveloping Fields
§ 1. The Tensor Operators 242
§ 2. The Enveloping Algebra 249
§ 3. The Invariant Operators 251
§ 4. Casimir Operators for Classical Lie Group 254
§ 5. The Enveloping Field 266
§ 6. Further Results and Comments 273
§ 7. Exercises 275
Chapter 10
The Explicit Construction of Finite Dimensional Irreducible
Representations
§ 1. The Gel'fand Zetlin Method . 277
§ 2. The Tensor Method 291
§ 3. The Method of Harmonic Functions 302
.§ 4. The Method of Creation and Annihilation Operators 309
§ 5. Comments and Supplements 312
§ 6. Exercises 314
Chapter 11
Representation Theory of Lie and Enveloping Algebras by Unbounded
Operators: Analytic Vectors and Integrability
§ 1. Representations of Lie Algebras by Unbounded Operators . 318
§ 2. Representations of Enveloping Algebras by Unbounded Operators 323
§3. Analytic Vectors and Analytic Dominance 331
§ 4. Analytic Vectors for Unitary Representations of Lie Groups . 344
§ 5. Integrability of Representations of Lie Algebras 348
§ 6: FS3 Theory of Integrability of Lie Algebras Representations . 352
§ 7. The 'Heat Equation' on a Lie Group and Analytic Vectors . 358
XII CONTENTS
§ 8. Algebraic Construction of Irreducible Representations . 365
§ 9. Comments and Supplements 372
§ 10. Exercises 373
Chapter 12
Quantum Dynamical Applications of Lie Algebra Representations
§ 1. Symmetry Algebras in Hamiltonian Formulation . 378
§ 2. Dynamical Lie Algebras 382
§ 3. Exercises 386
Chapter 13
Group Theory and Group Representations in Quantum Theory
§ 1. Group Representations in Physics 392
§ 2. Kinematical Postulates of Quantum Theory 394
§ 3. Symmetries of Physical Systems 406
§ 4. Dynamical Symmetries of Relativistic and Non Relativistic Systems 412
§ 5. Comments and Supplements 417
§ 6. Exercises 418
Chapter 14
Harmonic Analysis on Lie Groups. Special Functions and Group
Representations
§ 1. Harmonic Analysis on Abelian and Compact Lie Groups 421
§ 2. Harmonic Analysis on Unimodular Lie Groups 423
§3. Harmonic Analysis on Semidirect Product of Groups 431
§ 4. Comments and Supplements 435
§ 5. Exercises
Chapter 15
Harmonic Analysis on Homogeneous Spaces
§ 1. Invariant Operators on Homogeneous Spaces 439
§ 2. Harmonic Analysis on Homogeneous Spaces 441
§ 3. Harmonic Analysis on Symmetric Spaces Associated with Pseudo
Orthogonal Groups SO(p, q) 446
§ 4. Generalized Projection Operators 459
§ 5. Comments and Supplements 466
§ 6. Exercises 470
Chapter 16
Induced Representations
§ 1. The Concept of Induced Representations 473
§ 2. Basic Properties of Induced Representation 487
CONTENTS yjjj
§ 3. Systems of Imprimitivity 493
§ 4. Comments and Supplements 501
§ 5. Exercises 493
Chapter 17
Induced Representations of semidirect Products
§ 1. Representation Theory of Semidirect Products 503
§2. Induced Unitary Representations of the Poincare Group 513
§ 3. Representation of the Extended Poincare Group 525
§ 4. Indecomposable Representations of Poincare Group 527
§ 5. Comments and Supplements 536
§ 6. Exercises 537
Chapter 18
Fundamental Theorems of Induced Representations
§ 1. The Induction Reduction Theorem 540
§ 2. Tensor Product Theorem 546
§ 3. The Frobenius Reciprocity Theorem 549
§ 4. Comments and Supplements 553
§ 5. Exercises 553
Chapter 19'
Induced Representations of Semisimple Lie Groups
§ 1. Induced Representations of Semisimple Lie Groups 555
§ 2. Properties of the Group SL(w, C) and Its Subgroups 559
§ 3. The Principal Nondegenerate Series of Unitary Representations of
SLO, C) 560
§ 4. Principal Degenerate Series of SL(/?, C) 567
§ 5. Supplementary Nondegenerate and Degenerate Series 570
§ 6. Comments and Supplements 577
§ 7. Exercises 578
Chapter 20
Applications of Induced Representations
§ 1. The Relativistic Position Operator 581
§ 2. The Representations of the Heisenberg Commutation Relations . . 588
§ 3. Comments and Supplements 591
§ 4. Exercises 593
Chapter 21
Group Representations in Relativistic Quantum. Theory
§1. Relativistic Wave Equations and Induced Representations . 596
§ 2. Finite Component Relativistic Wave Equations 601
XIV CONTENTS
§ 3. Infinite Component Wave Equations 609
§ 4. Group Extensions and Applications 619
§ 5. Space Time and Internal Symmetries 626
§ 6. Comments and Supplements 630
§ 7. Exercises 636
Appendix A
Algebra, Topology, Measure and Integration Theory 637
Appendix B
Functional Analysis
§ 1. Closed, Symmetric and Self Adjoint Operators in Hilbert Space . . 641
§ 2. Integration of Vector and Operator Functions 645
§ 3. Spectral Theory of Operators 649
§ 4. Functions of Self Adjoint Operators 662
§ 5. Essentially Self Adjoint Operators 663
Bibliography 667
List of Important Symbols 703
Author Index 706
Subject Index 710 |
any_adam_object | 1 |
author | Barut, Asim O. 1926-1994 Rączka, Ryszard 1931-1996 |
author_GND | (DE-588)143274074 (DE-588)1053302282 |
author_facet | Barut, Asim O. 1926-1994 Rączka, Ryszard 1931-1996 |
author_role | aut aut |
author_sort | Barut, Asim O. 1926-1994 |
author_variant | a o b ao aob r r rr |
building | Verbundindex |
bvnumber | BV003635732 |
classification_rvk | SK 260 UK 3000 |
ctrlnum | (OCoLC)168932416 (DE-599)BVBBV003635732 |
discipline | Physik Mathematik |
edition | 2. rev. ed. |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nam a2200000 c 4500</leader><controlfield tag="001">BV003635732</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20240812</controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">900725s1980 |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">8301027169</subfield><subfield code="9">83-01-02716-9</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)168932416</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV003635732</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-824</subfield><subfield code="a">DE-29T</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-83</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 260</subfield><subfield code="0">(DE-625)143227:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UK 3000</subfield><subfield code="0">(DE-625)145799:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">20Cxx</subfield><subfield code="2">msc</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Barut, Asim O.</subfield><subfield code="d">1926-1994</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)143274074</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Theory of group representations and applications</subfield><subfield code="c">Asim O. Barut ; Ryszard Raczka</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">2. rev. ed.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Warszawa</subfield><subfield code="b">Polish Scientific Publ.</subfield><subfield code="c">1980</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XIX, 717 S.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Fizyka matematyczna</subfield><subfield code="2">jhpk</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Reprezentacje grup</subfield><subfield code="2">jhpk</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Darstellung</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4128289-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Gruppentheorie</subfield><subfield code="0">(DE-588)4072157-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Darstellungstheorie</subfield><subfield code="0">(DE-588)4148816-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Gruppe</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4022379-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Anwendung</subfield><subfield code="0">(DE-588)4196864-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Gruppe</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4022379-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Anwendung</subfield><subfield code="0">(DE-588)4196864-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Gruppentheorie</subfield><subfield code="0">(DE-588)4072157-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Darstellungstheorie</subfield><subfield code="0">(DE-588)4148816-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="2"><subfield code="a">Anwendung</subfield><subfield code="0">(DE-588)4196864-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Gruppe</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4022379-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="3" ind2="0"><subfield code="a">Darstellung</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4128289-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="3" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Rączka, Ryszard</subfield><subfield code="d">1931-1996</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1053302282</subfield><subfield code="4">aut</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HBZ Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=002316289&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-002316289</subfield></datafield></record></collection> |
genre | Darstellungsgeometrie gnd |
genre_facet | Darstellungsgeometrie |
id | DE-604.BV003635732 |
illustrated | Not Illustrated |
indexdate | 2024-08-13T00:08:16Z |
institution | BVB |
isbn | 8301027169 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-002316289 |
oclc_num | 168932416 |
open_access_boolean | |
owner | DE-384 DE-703 DE-355 DE-BY-UBR DE-824 DE-29T DE-19 DE-BY-UBM DE-83 |
owner_facet | DE-384 DE-703 DE-355 DE-BY-UBR DE-824 DE-29T DE-19 DE-BY-UBM DE-83 |
physical | XIX, 717 S. |
publishDate | 1980 |
publishDateSearch | 1980 |
publishDateSort | 1980 |
publisher | Polish Scientific Publ. |
record_format | marc |
spelling | Barut, Asim O. 1926-1994 Verfasser (DE-588)143274074 aut Theory of group representations and applications Asim O. Barut ; Ryszard Raczka 2. rev. ed. Warszawa Polish Scientific Publ. 1980 XIX, 717 S. txt rdacontent n rdamedia nc rdacarrier Fizyka matematyczna jhpk Reprezentacje grup jhpk Darstellung Mathematik (DE-588)4128289-9 gnd rswk-swf Gruppentheorie (DE-588)4072157-7 gnd rswk-swf Darstellungstheorie (DE-588)4148816-7 gnd rswk-swf Gruppe Mathematik (DE-588)4022379-6 gnd rswk-swf Anwendung (DE-588)4196864-5 gnd rswk-swf Gruppe Mathematik (DE-588)4022379-6 s Anwendung (DE-588)4196864-5 s DE-604 Gruppentheorie (DE-588)4072157-7 s Darstellungstheorie (DE-588)4148816-7 s 1\p DE-604 Darstellung Mathematik (DE-588)4128289-9 s 2\p DE-604 Rączka, Ryszard 1931-1996 Verfasser (DE-588)1053302282 aut HBZ Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=002316289&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Barut, Asim O. 1926-1994 Rączka, Ryszard 1931-1996 Theory of group representations and applications Fizyka matematyczna jhpk Reprezentacje grup jhpk Darstellung Mathematik (DE-588)4128289-9 gnd Gruppentheorie (DE-588)4072157-7 gnd Darstellungstheorie (DE-588)4148816-7 gnd Gruppe Mathematik (DE-588)4022379-6 gnd Anwendung (DE-588)4196864-5 gnd |
subject_GND | (DE-588)4128289-9 (DE-588)4072157-7 (DE-588)4148816-7 (DE-588)4022379-6 (DE-588)4196864-5 |
title | Theory of group representations and applications |
title_auth | Theory of group representations and applications |
title_exact_search | Theory of group representations and applications |
title_full | Theory of group representations and applications Asim O. Barut ; Ryszard Raczka |
title_fullStr | Theory of group representations and applications Asim O. Barut ; Ryszard Raczka |
title_full_unstemmed | Theory of group representations and applications Asim O. Barut ; Ryszard Raczka |
title_short | Theory of group representations and applications |
title_sort | theory of group representations and applications |
topic | Fizyka matematyczna jhpk Reprezentacje grup jhpk Darstellung Mathematik (DE-588)4128289-9 gnd Gruppentheorie (DE-588)4072157-7 gnd Darstellungstheorie (DE-588)4148816-7 gnd Gruppe Mathematik (DE-588)4022379-6 gnd Anwendung (DE-588)4196864-5 gnd |
topic_facet | Fizyka matematyczna Reprezentacje grup Darstellung Mathematik Gruppentheorie Darstellungstheorie Gruppe Mathematik Anwendung |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=002316289&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT barutasimo theoryofgrouprepresentationsandapplications AT raczkaryszard theoryofgrouprepresentationsandapplications |