Homotopy equivalences of 3-manifolds with boundaries:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Berlin, [u.a.]
Springer
1979
|
Schriftenreihe: | Lecture notes in mathematics
761 |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | 303 Seiten |
ISBN: | 3540097147 0387097147 |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV003608586 | ||
003 | DE-604 | ||
005 | 20240904 | ||
007 | t | ||
008 | 900725s1979 |||| 00||| eng d | ||
020 | |a 3540097147 |9 3-540-09714-7 | ||
020 | |a 0387097147 |9 0-387-09714-7 | ||
035 | |a (OCoLC)5612366 | ||
035 | |a (DE-599)BVBBV003608586 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-384 |a DE-473 |a DE-355 |a DE-20 |a DE-824 |a DE-29T |a DE-91G |a DE-19 |a DE-706 |a DE-83 |a DE-188 |a DE-11 | ||
050 | 0 | |a QA3 | |
082 | 0 | |a 514/.2 | |
082 | 0 | |a 510/.8 | |
084 | |a SI 850 |0 (DE-625)143199: |2 rvk | ||
084 | |a 55P10 |2 msc/1973 | ||
084 | |a 57M35 |2 msc/1973 | ||
084 | |a 57N10 |2 msc/1973 | ||
100 | 1 | |a Johannson, Klaus |4 aut | |
245 | 1 | 0 | |a Homotopy equivalences of 3-manifolds with boundaries |c Klaus Johannson |
264 | 1 | |a Berlin, [u.a.] |b Springer |c 1979 | |
300 | |a 303 Seiten | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Lecture notes in mathematics |v 761 | |
650 | 4 | |a Variétés (Mathématiques) | |
650 | 4 | |a Équivalences d'homotopie | |
650 | 4 | |a Homotopy equivalences | |
650 | 4 | |a Manifolds (Mathematics) | |
650 | 0 | 7 | |a Mannigfaltigkeit |0 (DE-588)4037379-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Homotopieäquivalenz |0 (DE-588)4160618-8 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Homotopieäquivalenz |0 (DE-588)4160618-8 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Mannigfaltigkeit |0 (DE-588)4037379-4 |D s |
689 | 1 | 1 | |a Homotopieäquivalenz |0 (DE-588)4160618-8 |D s |
689 | 1 | |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe |z 978-3-540-38486-1 |
830 | 0 | |a Lecture notes in mathematics |v 761 |w (DE-604)BV000676446 |9 761 | |
856 | 4 | 2 | |m HBZ Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=002298174&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-002298174 | |
980 | 4 | |a (DE-12)AK10810631 |
Datensatz im Suchindex
_version_ | 1809312337981603840 |
---|---|
adam_text |
Contents.
Introduction 3
Part I. THE CONCEPTS OF CHARACTERISTIC SUBMANIFOLDS AND
MANIFOLDS WITH BOUNDARY-PATTERNS.
Chapter I; General theory.
SI. Definitions 19
§2. Useful boundary-patterns 22
§3. Essential maps 27
§4. Essential surfaces and useful boundary-patterns 32
Chapter II; Essential singular surfaces in some special
3-manifolds.
§5. I-bundles and Seifert fibre spaces 47
§6. Stallings manifolds 65
§7. Generalized Seifert fibre spaces 80
Chapter III: Characteristic submanifolds.
§8. Definition of a characteristic subraanifold 83
§9. Existence of a characteristic submanifold 86
§10. Uniqueness of the characteristic submanifold 90
Part II. THE ENCLOSING THEOREM.
Chapter IV: Singular surfaces and characteristic
submanifolds.
811. A lemma on essential intersections 104
§12. Proof of the enclosing theorem 109
Chapter V; Singular submanifolds and characteristic
submanifolds.
S13. An extension of the enclosing theorem 120
§14. Homotopy equivalences between 3-manifolds with 123
torus boundaries
Part III. THE SPLITTING THEOREMS.
Chapter VI: Invariance of the characteristic submanifolds
under homotopy equivalences.
S15. The preimage of an essential F-manifold 135
816. Singular characteristic submanifolds 147
§17. The preimage of the characteristic submanifold 151
§18. Splitting a homotopy at the characteristic 155
submanifold
Chapter VII: Simple 3-manifolds.
§19. Isotopic surfaces in simple 3-manifolds 159
§20. Splitting a homotopy equivalence at a surface 165
§21. Splitting a homotopy at a surface 170
Part IV. THE CONCLUSION OF THE PROOF OF THE CLASSIFICATION
THEOREM.
Chapter VIII: Attaching homotopv equivalences.
§22. The induction beginning 174
§23. The induction step I77
§24. The classification theorem 181
Part V. LOCAL CONSTRUCTIONS FOR HOMOTOPY EQUIVALENCES.
Chapter IX; Dehn twists of 3-manifolds.
§25. On the mapping class group of Seifert fibre 188
spaces
§26. Homeomorphisms of I-bundles 205
§27. On the mapping class group of 3-manifolds 213
Chapter X: Dehn flips of 3-manifolds.
§28. Geometric obstructions for homotopy equivalences 227
§29. On the homotopy type of 3-manifolds and the 243
isomorphism problem for 3-manifold groups
Part VT. APPENDIX.
Chapter XI: Homotopy equivalences of surfaces and
I-bundles
§30. Homotopy equivalences of surfaces 251
§31. Homotopy equivalences of product I-bundles 274
Chapter XII: Geometric properties of 3-manifold groups.
§32. The influence of exceptional curves on 3-manifold 280
groups
References 297
Index 301 |
any_adam_object | 1 |
author | Johannson, Klaus |
author_facet | Johannson, Klaus |
author_role | aut |
author_sort | Johannson, Klaus |
author_variant | k j kj |
building | Verbundindex |
bvnumber | BV003608586 |
callnumber-first | Q - Science |
callnumber-label | QA3 |
callnumber-raw | QA3 |
callnumber-search | QA3 |
callnumber-sort | QA 13 |
callnumber-subject | QA - Mathematics |
classification_rvk | SI 850 |
ctrlnum | (OCoLC)5612366 (DE-599)BVBBV003608586 |
dewey-full | 514/.2 510/.8 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 514 - Topology 510 - Mathematics |
dewey-raw | 514/.2 510/.8 |
dewey-search | 514/.2 510/.8 |
dewey-sort | 3514 12 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nam a2200000 cb4500</leader><controlfield tag="001">BV003608586</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20240904</controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">900725s1979 |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3540097147</subfield><subfield code="9">3-540-09714-7</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0387097147</subfield><subfield code="9">0-387-09714-7</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)5612366</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV003608586</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-384</subfield><subfield code="a">DE-473</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-824</subfield><subfield code="a">DE-29T</subfield><subfield code="a">DE-91G</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-706</subfield><subfield code="a">DE-83</subfield><subfield code="a">DE-188</subfield><subfield code="a">DE-11</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA3</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">514/.2</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">510/.8</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SI 850</subfield><subfield code="0">(DE-625)143199:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">55P10</subfield><subfield code="2">msc/1973</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">57M35</subfield><subfield code="2">msc/1973</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">57N10</subfield><subfield code="2">msc/1973</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Johannson, Klaus</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Homotopy equivalences of 3-manifolds with boundaries</subfield><subfield code="c">Klaus Johannson</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin, [u.a.]</subfield><subfield code="b">Springer</subfield><subfield code="c">1979</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">303 Seiten</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Lecture notes in mathematics</subfield><subfield code="v">761</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Variétés (Mathématiques)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Équivalences d'homotopie</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Homotopy equivalences</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Manifolds (Mathematics)</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mannigfaltigkeit</subfield><subfield code="0">(DE-588)4037379-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Homotopieäquivalenz</subfield><subfield code="0">(DE-588)4160618-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Homotopieäquivalenz</subfield><subfield code="0">(DE-588)4160618-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Mannigfaltigkeit</subfield><subfield code="0">(DE-588)4037379-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Homotopieäquivalenz</subfield><subfield code="0">(DE-588)4160618-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe</subfield><subfield code="z">978-3-540-38486-1</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Lecture notes in mathematics</subfield><subfield code="v">761</subfield><subfield code="w">(DE-604)BV000676446</subfield><subfield code="9">761</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HBZ Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=002298174&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-002298174</subfield></datafield><datafield tag="980" ind1="4" ind2=" "><subfield code="a">(DE-12)AK10810631</subfield></datafield></record></collection> |
id | DE-604.BV003608586 |
illustrated | Not Illustrated |
indexdate | 2024-09-05T00:05:06Z |
institution | BVB |
isbn | 3540097147 0387097147 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-002298174 |
oclc_num | 5612366 |
open_access_boolean | |
owner | DE-12 DE-384 DE-473 DE-BY-UBG DE-355 DE-BY-UBR DE-20 DE-824 DE-29T DE-91G DE-BY-TUM DE-19 DE-BY-UBM DE-706 DE-83 DE-188 DE-11 |
owner_facet | DE-12 DE-384 DE-473 DE-BY-UBG DE-355 DE-BY-UBR DE-20 DE-824 DE-29T DE-91G DE-BY-TUM DE-19 DE-BY-UBM DE-706 DE-83 DE-188 DE-11 |
physical | 303 Seiten |
psigel | TUB-nveb |
publishDate | 1979 |
publishDateSearch | 1979 |
publishDateSort | 1979 |
publisher | Springer |
record_format | marc |
series | Lecture notes in mathematics |
series2 | Lecture notes in mathematics |
spelling | Johannson, Klaus aut Homotopy equivalences of 3-manifolds with boundaries Klaus Johannson Berlin, [u.a.] Springer 1979 303 Seiten txt rdacontent n rdamedia nc rdacarrier Lecture notes in mathematics 761 Variétés (Mathématiques) Équivalences d'homotopie Homotopy equivalences Manifolds (Mathematics) Mannigfaltigkeit (DE-588)4037379-4 gnd rswk-swf Homotopieäquivalenz (DE-588)4160618-8 gnd rswk-swf Homotopieäquivalenz (DE-588)4160618-8 s DE-604 Mannigfaltigkeit (DE-588)4037379-4 s Erscheint auch als Online-Ausgabe 978-3-540-38486-1 Lecture notes in mathematics 761 (DE-604)BV000676446 761 HBZ Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=002298174&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Johannson, Klaus Homotopy equivalences of 3-manifolds with boundaries Lecture notes in mathematics Variétés (Mathématiques) Équivalences d'homotopie Homotopy equivalences Manifolds (Mathematics) Mannigfaltigkeit (DE-588)4037379-4 gnd Homotopieäquivalenz (DE-588)4160618-8 gnd |
subject_GND | (DE-588)4037379-4 (DE-588)4160618-8 |
title | Homotopy equivalences of 3-manifolds with boundaries |
title_auth | Homotopy equivalences of 3-manifolds with boundaries |
title_exact_search | Homotopy equivalences of 3-manifolds with boundaries |
title_full | Homotopy equivalences of 3-manifolds with boundaries Klaus Johannson |
title_fullStr | Homotopy equivalences of 3-manifolds with boundaries Klaus Johannson |
title_full_unstemmed | Homotopy equivalences of 3-manifolds with boundaries Klaus Johannson |
title_short | Homotopy equivalences of 3-manifolds with boundaries |
title_sort | homotopy equivalences of 3 manifolds with boundaries |
topic | Variétés (Mathématiques) Équivalences d'homotopie Homotopy equivalences Manifolds (Mathematics) Mannigfaltigkeit (DE-588)4037379-4 gnd Homotopieäquivalenz (DE-588)4160618-8 gnd |
topic_facet | Variétés (Mathématiques) Équivalences d'homotopie Homotopy equivalences Manifolds (Mathematics) Mannigfaltigkeit Homotopieäquivalenz |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=002298174&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
volume_link | (DE-604)BV000676446 |
work_keys_str_mv | AT johannsonklaus homotopyequivalencesof3manifoldswithboundaries |