Blocks of tame representation type and related algebras:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Berlin [u.a.]
Springer
1990
|
Schriftenreihe: | Lecture notes in mathematics
1428 |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | XV, 312 S. graph. Darst. |
ISBN: | 3540527095 0387527095 |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV003593951 | ||
003 | DE-604 | ||
005 | 20080213 | ||
007 | t | ||
008 | 900829s1990 d||| |||| 00||| eng d | ||
020 | |a 3540527095 |9 3-540-52709-5 | ||
020 | |a 0387527095 |9 0-387-52709-5 | ||
035 | |a (OCoLC)246274502 | ||
035 | |a (DE-599)BVBBV003593951 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-91G |a DE-384 |a DE-355 |a DE-20 |a DE-824 |a DE-29T |a DE-706 |a DE-83 |a DE-188 |a DE-11 | ||
050 | 0 | |a QA3 | |
082 | 0 | |a 510 |2 20 | |
082 | 0 | |a 512/.2 |2 20 | |
084 | |a SI 850 |0 (DE-625)143199: |2 rvk | ||
084 | |a SK 260 |0 (DE-625)143227: |2 rvk | ||
084 | |a 20C20 |2 msc | ||
084 | |a MAT 160f |2 stub | ||
100 | 1 | |a Erdmann, Karin |d 1948- |e Verfasser |0 (DE-588)109876644 |4 aut | |
245 | 1 | 0 | |a Blocks of tame representation type and related algebras |c Karin Erdmann |
264 | 1 | |a Berlin [u.a.] |b Springer |c 1990 | |
300 | |a XV, 312 S. |b graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Lecture notes in mathematics |v 1428 | |
650 | 4 | |a Anneaux de groupes | |
650 | 7 | |a Modulaire voorstellingen |2 gtt | |
650 | 7 | |a Representatie (wiskunde) |2 gtt | |
650 | 4 | |a Représentations modulaires de groupes | |
650 | 4 | |a Group rings | |
650 | 4 | |a Modular representations of groups | |
650 | 4 | |a Tame algebras | |
650 | 0 | 7 | |a Gruppenring |0 (DE-588)4158469-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Charakter |g Gruppentheorie |0 (DE-588)4158438-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Algebra |0 (DE-588)4001156-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Zahme Algebra |0 (DE-588)4190485-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Block |g Mathematik |0 (DE-588)4146017-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Modulare Darstellung |0 (DE-588)4311996-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Zahme Darstellung |0 (DE-588)4140072-0 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Block |g Mathematik |0 (DE-588)4146017-0 |D s |
689 | 0 | 1 | |a Zahme Darstellung |0 (DE-588)4140072-0 |D s |
689 | 0 | 2 | |a Algebra |0 (DE-588)4001156-2 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Zahme Darstellung |0 (DE-588)4140072-0 |D s |
689 | 1 | 1 | |a Algebra |0 (DE-588)4001156-2 |D s |
689 | 1 | |5 DE-604 | |
689 | 2 | 0 | |a Zahme Algebra |0 (DE-588)4190485-0 |D s |
689 | 2 | |5 DE-604 | |
689 | 3 | 0 | |a Block |g Mathematik |0 (DE-588)4146017-0 |D s |
689 | 3 | 1 | |a Zahme Darstellung |0 (DE-588)4140072-0 |D s |
689 | 3 | |5 DE-604 | |
689 | 4 | 0 | |a Gruppenring |0 (DE-588)4158469-7 |D s |
689 | 4 | |5 DE-604 | |
689 | 5 | 0 | |a Charakter |g Gruppentheorie |0 (DE-588)4158438-7 |D s |
689 | 5 | 1 | |a Modulare Darstellung |0 (DE-588)4311996-7 |D s |
689 | 5 | |5 DE-604 | |
830 | 0 | |a Lecture notes in mathematics |v 1428 |w (DE-604)BV000676446 |9 1428 | |
856 | 4 | 2 | |m HBZ Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=002288439&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
Datensatz im Suchindex
_version_ | 1805082696241643520 |
---|---|
adam_text |
TABLE OF CONTENTS
Introduction III
I. Algebras, quivers, representation type. Auslander Reiten theory coverings 1
1.1 Background
1.2 Morita equivalence, basic algebras
1.3 Symmetric algebras
1.4 The representation type
1.5 Algebras and quivers
1.6 The quiver of a symmetric algebra
1.7 Auslander Reiten sequences
1.8 The Auslander Reiten quiver
1.9 Some wild algebras
1.10 Coverings
II Special biserial algebras and the local semidihedral algebra 47
11.1 Special bierial algebras, string algebras
11.2 Words; strings, bands
11.3 Indecomposable modules for special biserial algebras
11.4 Irreducible maps for band modules
11.5 Irreducible maps for string modules
11.6 Auslander Reiten sequences for special biserial algebras
11.7 Auslander Reiten components for some special biserial algebras
11.8 Some algebras of finite type
11.9 Indecomposable nodules of the semidihedral algebra
11.10 Auslander Reiten components for the semidihedral algebra
III Tame symmetric local algebras 80
III. 1 List of tame local symmetric algebras, characterizations
III.2 12 Proofs
III.13 The group algebras of the dihedral, seaidihedral and quaternion 2 groups
for char K = 2
XIV
111.14 The centres of tame local symmetric algebras
111.15 The socles of tame local symmetric algebras
111.16 Recognizing the isomorphism type
111.17 The dihedral, semidihedral, quaternion 2 groups
IV More on modules, ouivers. Auslander Reiten sequences 93
IV.1 Modules and n, t
IV.2 Quivers of tame symmetric algebras with at most three simple modules
IV.3 Exploiting the Auslander Reiten quiver
IV.4 6 Ends of componentsl, II, III
V Stable Auslander Reiten components for tame blocks 121
V.I Modular group representations
V.2 Some tame blocks of 2 local groups
V.3 On the AR quiver of group algebras
V.4 The stable AR quiver for tame blocks
V.5 The number of irreducible characters for tame blocks
VI Algebras of dihedral type 159
VI.1 A class of symmetric algebras where hearts are decomposable
VI.2 Algebras of dihedral type
VI.3 5 The number of simple modules, the possible quivers
VI.6 fl on arrows, composition factors
VI.7 Algebras with one simple module
VI.8 Algebras with two simple modules
VI.9 Algebras with three simple modules
VI.10 The converse
VII Algebras of quaternion type 181
VII. 1 2 Definition, examples
VII.3 The number of simple modules, possible quivers, general properties
VII.6 Algebras with one simple nodule
XV
VII.7 Algebras with two simple modules
VII.8 Algebras with three simple modules
VII.9 On the converse
VIII Algebras of semidihedral type 205
VIII.1 2 Definition, examples, outline of the strategy
VIII.3 4 Algebras with two simple modules
VIII.5 Simple modules with three predecessors and vertices with three arrows
VIII.6 Quivers with few arrows
VIII.7 Algebras where projectives have isomorphic hearts
VIII.8 End vertices, exceptions
VIII.9 Quivers with enough arrows
VIII.10 On the converse
IX Centres, blocks, decomposition numbers 263
IX.1 On the centres of algebras of dihedral, semidihedral, quaternion type
IX.2 Gartan matrices and decomposition numbers for tame blocks
IX.3 One simple module
IX.4 Two simple modules
IX.5 Cartan matrices and blocks, three simple modules
IX.6 Decomposition numbers for tame blocks with three simple modules
X Some applications 286
X.I Quaternion Sylow 2 subgroups: The Theorem by Brauer and Suzuki
X.2 Relations for characters and recognizing the Norita equivalence class of
a tame block
X.3 Tame blocks for alternating groups
X.4 Some corrections
Bibliography 307 |
any_adam_object | 1 |
author | Erdmann, Karin 1948- |
author_GND | (DE-588)109876644 |
author_facet | Erdmann, Karin 1948- |
author_role | aut |
author_sort | Erdmann, Karin 1948- |
author_variant | k e ke |
building | Verbundindex |
bvnumber | BV003593951 |
callnumber-first | Q - Science |
callnumber-label | QA3 |
callnumber-raw | QA3 |
callnumber-search | QA3 |
callnumber-sort | QA 13 |
callnumber-subject | QA - Mathematics |
classification_rvk | SI 850 SK 260 |
classification_tum | MAT 160f |
ctrlnum | (OCoLC)246274502 (DE-599)BVBBV003593951 |
dewey-full | 510 512/.2 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 510 - Mathematics 512 - Algebra |
dewey-raw | 510 512/.2 |
dewey-search | 510 512/.2 |
dewey-sort | 3510 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nam a2200000 cb4500</leader><controlfield tag="001">BV003593951</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20080213</controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">900829s1990 d||| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3540527095</subfield><subfield code="9">3-540-52709-5</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0387527095</subfield><subfield code="9">0-387-52709-5</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)246274502</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV003593951</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-91G</subfield><subfield code="a">DE-384</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-824</subfield><subfield code="a">DE-29T</subfield><subfield code="a">DE-706</subfield><subfield code="a">DE-83</subfield><subfield code="a">DE-188</subfield><subfield code="a">DE-11</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA3</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">510</subfield><subfield code="2">20</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">512/.2</subfield><subfield code="2">20</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SI 850</subfield><subfield code="0">(DE-625)143199:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 260</subfield><subfield code="0">(DE-625)143227:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">20C20</subfield><subfield code="2">msc</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 160f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Erdmann, Karin</subfield><subfield code="d">1948-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)109876644</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Blocks of tame representation type and related algebras</subfield><subfield code="c">Karin Erdmann</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin [u.a.]</subfield><subfield code="b">Springer</subfield><subfield code="c">1990</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XV, 312 S.</subfield><subfield code="b">graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Lecture notes in mathematics</subfield><subfield code="v">1428</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Anneaux de groupes</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Modulaire voorstellingen</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Representatie (wiskunde)</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Représentations modulaires de groupes</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Group rings</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Modular representations of groups</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Tame algebras</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Gruppenring</subfield><subfield code="0">(DE-588)4158469-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Charakter</subfield><subfield code="g">Gruppentheorie</subfield><subfield code="0">(DE-588)4158438-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Algebra</subfield><subfield code="0">(DE-588)4001156-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Zahme Algebra</subfield><subfield code="0">(DE-588)4190485-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Block</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4146017-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Modulare Darstellung</subfield><subfield code="0">(DE-588)4311996-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Zahme Darstellung</subfield><subfield code="0">(DE-588)4140072-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Block</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4146017-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Zahme Darstellung</subfield><subfield code="0">(DE-588)4140072-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Algebra</subfield><subfield code="0">(DE-588)4001156-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Zahme Darstellung</subfield><subfield code="0">(DE-588)4140072-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Algebra</subfield><subfield code="0">(DE-588)4001156-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Zahme Algebra</subfield><subfield code="0">(DE-588)4190485-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="3" ind2="0"><subfield code="a">Block</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4146017-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="3" ind2="1"><subfield code="a">Zahme Darstellung</subfield><subfield code="0">(DE-588)4140072-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="3" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="4" ind2="0"><subfield code="a">Gruppenring</subfield><subfield code="0">(DE-588)4158469-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="4" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="5" ind2="0"><subfield code="a">Charakter</subfield><subfield code="g">Gruppentheorie</subfield><subfield code="0">(DE-588)4158438-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="5" ind2="1"><subfield code="a">Modulare Darstellung</subfield><subfield code="0">(DE-588)4311996-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="5" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Lecture notes in mathematics</subfield><subfield code="v">1428</subfield><subfield code="w">(DE-604)BV000676446</subfield><subfield code="9">1428</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HBZ Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=002288439&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield></record></collection> |
id | DE-604.BV003593951 |
illustrated | Illustrated |
indexdate | 2024-07-20T07:36:46Z |
institution | BVB |
isbn | 3540527095 0387527095 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-002288439 |
oclc_num | 246274502 |
open_access_boolean | |
owner | DE-12 DE-91G DE-BY-TUM DE-384 DE-355 DE-BY-UBR DE-20 DE-824 DE-29T DE-706 DE-83 DE-188 DE-11 |
owner_facet | DE-12 DE-91G DE-BY-TUM DE-384 DE-355 DE-BY-UBR DE-20 DE-824 DE-29T DE-706 DE-83 DE-188 DE-11 |
physical | XV, 312 S. graph. Darst. |
publishDate | 1990 |
publishDateSearch | 1990 |
publishDateSort | 1990 |
publisher | Springer |
record_format | marc |
series | Lecture notes in mathematics |
series2 | Lecture notes in mathematics |
spelling | Erdmann, Karin 1948- Verfasser (DE-588)109876644 aut Blocks of tame representation type and related algebras Karin Erdmann Berlin [u.a.] Springer 1990 XV, 312 S. graph. Darst. txt rdacontent n rdamedia nc rdacarrier Lecture notes in mathematics 1428 Anneaux de groupes Modulaire voorstellingen gtt Representatie (wiskunde) gtt Représentations modulaires de groupes Group rings Modular representations of groups Tame algebras Gruppenring (DE-588)4158469-7 gnd rswk-swf Charakter Gruppentheorie (DE-588)4158438-7 gnd rswk-swf Algebra (DE-588)4001156-2 gnd rswk-swf Zahme Algebra (DE-588)4190485-0 gnd rswk-swf Block Mathematik (DE-588)4146017-0 gnd rswk-swf Modulare Darstellung (DE-588)4311996-7 gnd rswk-swf Zahme Darstellung (DE-588)4140072-0 gnd rswk-swf Block Mathematik (DE-588)4146017-0 s Zahme Darstellung (DE-588)4140072-0 s Algebra (DE-588)4001156-2 s DE-604 Zahme Algebra (DE-588)4190485-0 s Gruppenring (DE-588)4158469-7 s Charakter Gruppentheorie (DE-588)4158438-7 s Modulare Darstellung (DE-588)4311996-7 s Lecture notes in mathematics 1428 (DE-604)BV000676446 1428 HBZ Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=002288439&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Erdmann, Karin 1948- Blocks of tame representation type and related algebras Lecture notes in mathematics Anneaux de groupes Modulaire voorstellingen gtt Representatie (wiskunde) gtt Représentations modulaires de groupes Group rings Modular representations of groups Tame algebras Gruppenring (DE-588)4158469-7 gnd Charakter Gruppentheorie (DE-588)4158438-7 gnd Algebra (DE-588)4001156-2 gnd Zahme Algebra (DE-588)4190485-0 gnd Block Mathematik (DE-588)4146017-0 gnd Modulare Darstellung (DE-588)4311996-7 gnd Zahme Darstellung (DE-588)4140072-0 gnd |
subject_GND | (DE-588)4158469-7 (DE-588)4158438-7 (DE-588)4001156-2 (DE-588)4190485-0 (DE-588)4146017-0 (DE-588)4311996-7 (DE-588)4140072-0 |
title | Blocks of tame representation type and related algebras |
title_auth | Blocks of tame representation type and related algebras |
title_exact_search | Blocks of tame representation type and related algebras |
title_full | Blocks of tame representation type and related algebras Karin Erdmann |
title_fullStr | Blocks of tame representation type and related algebras Karin Erdmann |
title_full_unstemmed | Blocks of tame representation type and related algebras Karin Erdmann |
title_short | Blocks of tame representation type and related algebras |
title_sort | blocks of tame representation type and related algebras |
topic | Anneaux de groupes Modulaire voorstellingen gtt Representatie (wiskunde) gtt Représentations modulaires de groupes Group rings Modular representations of groups Tame algebras Gruppenring (DE-588)4158469-7 gnd Charakter Gruppentheorie (DE-588)4158438-7 gnd Algebra (DE-588)4001156-2 gnd Zahme Algebra (DE-588)4190485-0 gnd Block Mathematik (DE-588)4146017-0 gnd Modulare Darstellung (DE-588)4311996-7 gnd Zahme Darstellung (DE-588)4140072-0 gnd |
topic_facet | Anneaux de groupes Modulaire voorstellingen Representatie (wiskunde) Représentations modulaires de groupes Group rings Modular representations of groups Tame algebras Gruppenring Charakter Gruppentheorie Algebra Zahme Algebra Block Mathematik Modulare Darstellung Zahme Darstellung |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=002288439&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
volume_link | (DE-604)BV000676446 |
work_keys_str_mv | AT erdmannkarin blocksoftamerepresentationtypeandrelatedalgebras |