Lie groups, convex cones, and semigroups:
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Oxford
Clarendon Pr.
1989
|
Schriftenreihe: | Oxford mathematical monographs
|
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | Literaturverz. S. 621 - 632 |
Beschreibung: | XXXVIII, 645 S. graph. Darst. |
ISBN: | 0198535694 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV003564347 | ||
003 | DE-604 | ||
005 | 20200507 | ||
007 | t | ||
008 | 900827s1989 d||| |||| 00||| engod | ||
020 | |a 0198535694 |9 0-19-853569-4 | ||
035 | |a (OCoLC)19589530 | ||
035 | |a (DE-599)BVBBV003564347 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
049 | |a DE-91 |a DE-91G |a DE-703 |a DE-739 |a DE-384 |a DE-355 |a DE-12 |a DE-824 |a DE-29T |a DE-20 |a DE-706 |a DE-11 |a DE-188 | ||
050 | 0 | |a QA387 | |
082 | 0 | |a 512/.55 |2 20 | |
084 | |a SK 230 |0 (DE-625)143225: |2 rvk | ||
084 | |a SK 340 |0 (DE-625)143232: |2 rvk | ||
084 | |a MAT 206f |2 stub | ||
084 | |a MAT 225f |2 stub | ||
100 | 1 | |a Hilgert, Joachim |e Verfasser |4 aut | |
245 | 1 | 0 | |a Lie groups, convex cones, and semigroups |c Joachim Hilgert ; Karl Heinrich Hofmann and Jimmie D. Lawson |
264 | 1 | |a Oxford |b Clarendon Pr. |c 1989 | |
300 | |a XXXVIII, 645 S. |b graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 0 | |a Oxford mathematical monographs | |
500 | |a Literaturverz. S. 621 - 632 | ||
650 | 4 | |a Corps convexes | |
650 | 7 | |a Corps convexes |2 ram | |
650 | 7 | |a Demi-groupes |2 ram | |
650 | 4 | |a Lie, Groupes de | |
650 | 7 | |a Lie, groupes de |2 ram | |
650 | 4 | |a Semi-groupes | |
650 | 4 | |a Convex bodies | |
650 | 4 | |a Lie groups | |
650 | 4 | |a Semigroups | |
650 | 0 | 7 | |a Lie-Gruppe |0 (DE-588)4035695-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Lie-Algebra |0 (DE-588)4130355-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Lie-Halbgruppe |0 (DE-588)4329948-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Konvexer Körper |0 (DE-588)4165214-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Halbgruppe |0 (DE-588)4022990-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Konvexer Kegel |0 (DE-588)4165213-7 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Lie-Gruppe |0 (DE-588)4035695-4 |D s |
689 | 0 | 1 | |a Halbgruppe |0 (DE-588)4022990-7 |D s |
689 | 0 | 2 | |a Konvexer Kegel |0 (DE-588)4165213-7 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Lie-Halbgruppe |0 (DE-588)4329948-9 |D s |
689 | 1 | |5 DE-604 | |
689 | 2 | 0 | |a Lie-Gruppe |0 (DE-588)4035695-4 |D s |
689 | 2 | 1 | |a Konvexer Kegel |0 (DE-588)4165213-7 |D s |
689 | 2 | |5 DE-604 | |
689 | 3 | 0 | |a Lie-Algebra |0 (DE-588)4130355-6 |D s |
689 | 3 | 1 | |a Konvexer Körper |0 (DE-588)4165214-9 |D s |
689 | 3 | |5 DE-604 | |
700 | 1 | |a Hofmann, Karl H. |d 1932- |e Verfasser |0 (DE-588)115780734 |4 aut | |
700 | 1 | |a Lawson, Jimmie D. |e Verfasser |4 aut | |
856 | 4 | 2 | |m HBZ Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=002267680&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-002267680 |
Datensatz im Suchindex
_version_ | 1804117913971458048 |
---|---|
adam_text | Contents
Introduction ix
Chapter I. The geometry of cones
1.1. Cones and their duality 1
1.2. Exposed faces 10
1.3. Mazur s Density Theorem 31
1.4. Special finite dimensional cones 45
1.5. The invariance of cones under flows 59
Chapter II. Wedges in Lie algebras
II. 1. Lie wedges and invariant wedges in Lie algebras 75
11.2. Lie semialgebras 83
11.3. Low dimensional and special Lie semialgebras 102
11.4. Reducing Lie semialgebras, Cartan algebras 126
11.5. The base ideal and Lie semialgebras 136
11.6. Lorentzian Lie semialgebras 157
II. 7. Lie algebras with Lie semialgebras 171
Chapter III. Invariant cones
111.1. The automorphism group of wedges 181
111.2. Compact groups of automorphisms of a wedge 190
111.3. Frobenius Perron theory for wedges 201
111.4. The theorems of Kostant and Vinberg 208
111.5. The reconstruction of invariant cones 215
111.6. Cartan algebras and invariant cones 223
III. 7. Orbits and orbit projections 246
111.8. Kostant s convexity theorem 251
111.9. Invariant cones in reductive Lie algebras 259
Chapter IV. The local Lie theory of semigroups
IV.1. Local semigroups 283
IV.2. Tangent wedges and local wedge semigroups 299
IV.3. Locally reachable sets 306
IV.4. Lie s Theorem: Pointed cones—split wedges 316
IV.5. Geometric control theory in local Lie groups 329
IV.6. Wedge fields 341
IV.7. The rerouting technique 346
IV.8. The edge of the wedge theorem 356
Chapter V. Subsemigroups of Lie groups
V.O. Semigroups in groups 363
V.I. Infinitesimally generated semigroups 373
V.2. Groups associated with semigroups 382
V.3. Homomorphisms and semidirect products 391
V.4. Examples 399
V.5. Maximal semigroups 443
V.6. Divisible semigroups 459
V.7. Congruences on open subsemigroups 463
Chapter VI. Positivity
VI.1. Cone fields on homogeneous spaces 487
VI.2. Positive forms 501
VI.3. W admissible chains revisited 506
VI.4. Ordered groups and semigroups 513
VI.5. Globality and its applications 522
Chapter VII. Embedding semigroups into Lie groups
VII. 1. General embedding machinery 535
VII.2. Differentiate semigroups 554
VII.3. Cancellative semigroups on manifolds 578
Appendix
A.I. The Campbell Hausdorff formalism 597
A.2. Compactly embedded subalgebras 603
Reference material
Bibliography 621
Special symbols 633
Index 636
|
any_adam_object | 1 |
author | Hilgert, Joachim Hofmann, Karl H. 1932- Lawson, Jimmie D. |
author_GND | (DE-588)115780734 |
author_facet | Hilgert, Joachim Hofmann, Karl H. 1932- Lawson, Jimmie D. |
author_role | aut aut aut |
author_sort | Hilgert, Joachim |
author_variant | j h jh k h h kh khh j d l jd jdl |
building | Verbundindex |
bvnumber | BV003564347 |
callnumber-first | Q - Science |
callnumber-label | QA387 |
callnumber-raw | QA387 |
callnumber-search | QA387 |
callnumber-sort | QA 3387 |
callnumber-subject | QA - Mathematics |
classification_rvk | SK 230 SK 340 |
classification_tum | MAT 206f MAT 225f |
ctrlnum | (OCoLC)19589530 (DE-599)BVBBV003564347 |
dewey-full | 512/.55 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 512 - Algebra |
dewey-raw | 512/.55 |
dewey-search | 512/.55 |
dewey-sort | 3512 255 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02682nam a2200709 c 4500</leader><controlfield tag="001">BV003564347</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20200507 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">900827s1989 d||| |||| 00||| engod</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0198535694</subfield><subfield code="9">0-19-853569-4</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)19589530</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV003564347</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield><subfield code="a">DE-91G</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-739</subfield><subfield code="a">DE-384</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-12</subfield><subfield code="a">DE-824</subfield><subfield code="a">DE-29T</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-706</subfield><subfield code="a">DE-11</subfield><subfield code="a">DE-188</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA387</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">512/.55</subfield><subfield code="2">20</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 230</subfield><subfield code="0">(DE-625)143225:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 340</subfield><subfield code="0">(DE-625)143232:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 206f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 225f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Hilgert, Joachim</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Lie groups, convex cones, and semigroups</subfield><subfield code="c">Joachim Hilgert ; Karl Heinrich Hofmann and Jimmie D. Lawson</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Oxford</subfield><subfield code="b">Clarendon Pr.</subfield><subfield code="c">1989</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XXXVIII, 645 S.</subfield><subfield code="b">graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Oxford mathematical monographs</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Literaturverz. S. 621 - 632</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Corps convexes</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Corps convexes</subfield><subfield code="2">ram</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Demi-groupes</subfield><subfield code="2">ram</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Lie, Groupes de</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Lie, groupes de</subfield><subfield code="2">ram</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Semi-groupes</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Convex bodies</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Lie groups</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Semigroups</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Lie-Gruppe</subfield><subfield code="0">(DE-588)4035695-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Lie-Algebra</subfield><subfield code="0">(DE-588)4130355-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Lie-Halbgruppe</subfield><subfield code="0">(DE-588)4329948-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Konvexer Körper</subfield><subfield code="0">(DE-588)4165214-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Halbgruppe</subfield><subfield code="0">(DE-588)4022990-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Konvexer Kegel</subfield><subfield code="0">(DE-588)4165213-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Lie-Gruppe</subfield><subfield code="0">(DE-588)4035695-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Halbgruppe</subfield><subfield code="0">(DE-588)4022990-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Konvexer Kegel</subfield><subfield code="0">(DE-588)4165213-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Lie-Halbgruppe</subfield><subfield code="0">(DE-588)4329948-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Lie-Gruppe</subfield><subfield code="0">(DE-588)4035695-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2="1"><subfield code="a">Konvexer Kegel</subfield><subfield code="0">(DE-588)4165213-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="3" ind2="0"><subfield code="a">Lie-Algebra</subfield><subfield code="0">(DE-588)4130355-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="3" ind2="1"><subfield code="a">Konvexer Körper</subfield><subfield code="0">(DE-588)4165214-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="3" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hofmann, Karl H.</subfield><subfield code="d">1932-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)115780734</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lawson, Jimmie D.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HBZ Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=002267680&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-002267680</subfield></datafield></record></collection> |
id | DE-604.BV003564347 |
illustrated | Illustrated |
indexdate | 2024-07-09T16:01:58Z |
institution | BVB |
isbn | 0198535694 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-002267680 |
oclc_num | 19589530 |
open_access_boolean | |
owner | DE-91 DE-BY-TUM DE-91G DE-BY-TUM DE-703 DE-739 DE-384 DE-355 DE-BY-UBR DE-12 DE-824 DE-29T DE-20 DE-706 DE-11 DE-188 |
owner_facet | DE-91 DE-BY-TUM DE-91G DE-BY-TUM DE-703 DE-739 DE-384 DE-355 DE-BY-UBR DE-12 DE-824 DE-29T DE-20 DE-706 DE-11 DE-188 |
physical | XXXVIII, 645 S. graph. Darst. |
publishDate | 1989 |
publishDateSearch | 1989 |
publishDateSort | 1989 |
publisher | Clarendon Pr. |
record_format | marc |
series2 | Oxford mathematical monographs |
spelling | Hilgert, Joachim Verfasser aut Lie groups, convex cones, and semigroups Joachim Hilgert ; Karl Heinrich Hofmann and Jimmie D. Lawson Oxford Clarendon Pr. 1989 XXXVIII, 645 S. graph. Darst. txt rdacontent n rdamedia nc rdacarrier Oxford mathematical monographs Literaturverz. S. 621 - 632 Corps convexes Corps convexes ram Demi-groupes ram Lie, Groupes de Lie, groupes de ram Semi-groupes Convex bodies Lie groups Semigroups Lie-Gruppe (DE-588)4035695-4 gnd rswk-swf Lie-Algebra (DE-588)4130355-6 gnd rswk-swf Lie-Halbgruppe (DE-588)4329948-9 gnd rswk-swf Konvexer Körper (DE-588)4165214-9 gnd rswk-swf Halbgruppe (DE-588)4022990-7 gnd rswk-swf Konvexer Kegel (DE-588)4165213-7 gnd rswk-swf Lie-Gruppe (DE-588)4035695-4 s Halbgruppe (DE-588)4022990-7 s Konvexer Kegel (DE-588)4165213-7 s DE-604 Lie-Halbgruppe (DE-588)4329948-9 s Lie-Algebra (DE-588)4130355-6 s Konvexer Körper (DE-588)4165214-9 s Hofmann, Karl H. 1932- Verfasser (DE-588)115780734 aut Lawson, Jimmie D. Verfasser aut HBZ Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=002267680&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Hilgert, Joachim Hofmann, Karl H. 1932- Lawson, Jimmie D. Lie groups, convex cones, and semigroups Corps convexes Corps convexes ram Demi-groupes ram Lie, Groupes de Lie, groupes de ram Semi-groupes Convex bodies Lie groups Semigroups Lie-Gruppe (DE-588)4035695-4 gnd Lie-Algebra (DE-588)4130355-6 gnd Lie-Halbgruppe (DE-588)4329948-9 gnd Konvexer Körper (DE-588)4165214-9 gnd Halbgruppe (DE-588)4022990-7 gnd Konvexer Kegel (DE-588)4165213-7 gnd |
subject_GND | (DE-588)4035695-4 (DE-588)4130355-6 (DE-588)4329948-9 (DE-588)4165214-9 (DE-588)4022990-7 (DE-588)4165213-7 |
title | Lie groups, convex cones, and semigroups |
title_auth | Lie groups, convex cones, and semigroups |
title_exact_search | Lie groups, convex cones, and semigroups |
title_full | Lie groups, convex cones, and semigroups Joachim Hilgert ; Karl Heinrich Hofmann and Jimmie D. Lawson |
title_fullStr | Lie groups, convex cones, and semigroups Joachim Hilgert ; Karl Heinrich Hofmann and Jimmie D. Lawson |
title_full_unstemmed | Lie groups, convex cones, and semigroups Joachim Hilgert ; Karl Heinrich Hofmann and Jimmie D. Lawson |
title_short | Lie groups, convex cones, and semigroups |
title_sort | lie groups convex cones and semigroups |
topic | Corps convexes Corps convexes ram Demi-groupes ram Lie, Groupes de Lie, groupes de ram Semi-groupes Convex bodies Lie groups Semigroups Lie-Gruppe (DE-588)4035695-4 gnd Lie-Algebra (DE-588)4130355-6 gnd Lie-Halbgruppe (DE-588)4329948-9 gnd Konvexer Körper (DE-588)4165214-9 gnd Halbgruppe (DE-588)4022990-7 gnd Konvexer Kegel (DE-588)4165213-7 gnd |
topic_facet | Corps convexes Demi-groupes Lie, Groupes de Lie, groupes de Semi-groupes Convex bodies Lie groups Semigroups Lie-Gruppe Lie-Algebra Lie-Halbgruppe Konvexer Körper Halbgruppe Konvexer Kegel |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=002267680&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT hilgertjoachim liegroupsconvexconesandsemigroups AT hofmannkarlh liegroupsconvexconesandsemigroups AT lawsonjimmied liegroupsconvexconesandsemigroups |