Solutions to problems: A first course in stochastic processes:
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
New York [u.a.]
Acad. Press
[1975]
|
Ausgabe: | 2. ed. |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | Erscheinungsjahr ermittelt |
Beschreibung: | 92 S. graph. Darst. |
ISBN: | 0123985536 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV003477775 | ||
003 | DE-604 | ||
005 | 20180817 | ||
007 | t | ||
008 | 900725s1975 d||| |||| 00||| eng d | ||
020 | |a 0123985536 |9 0-12-398553-6 | ||
035 | |a (OCoLC)5175157 | ||
035 | |a (DE-599)BVBBV003477775 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-19 | ||
050 | 0 | |a QA274 | |
082 | 0 | |a 519.2 |2 19 | |
084 | |a QH 237 |0 (DE-625)141552: |2 rvk | ||
084 | |a SK 820 |0 (DE-625)143258: |2 rvk | ||
100 | 1 | |a Karlin, Samuel |d 1924-2007 |e Verfasser |0 (DE-588)118918672 |4 aut | |
245 | 1 | 0 | |a Solutions to problems: A first course in stochastic processes |c Samuel Karlin ; Howard M. Taylor |
250 | |a 2. ed. | ||
264 | 1 | |a New York [u.a.] |b Acad. Press |c [1975] | |
300 | |a 92 S. |b graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
500 | |a Erscheinungsjahr ermittelt | ||
650 | 4 | |a Stochastic processes | |
650 | 0 | 7 | |a Stochastischer Prozess |0 (DE-588)4057630-9 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Stochastischer Prozess |0 (DE-588)4057630-9 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Taylor, Howard M. |e Verfasser |4 aut | |
856 | 4 | 2 | |m HEBIS Datenaustausch Mainz |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=002203072&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-002203072 |
Datensatz im Suchindex
_version_ | 1804117823862079488 |
---|---|
adam_text | A FIRST COURSE IN STOCHASTIC PROCESSES SECOND EDITION SAMUEL KARLIN
HOWARD M. TAYLOR STANFORD UNIVERSITY CORNELL UNIVERSITY AND THE WEIZMANN
INSTITUTE OF SCIENCE ACADEMIC PRESS NEW YORK SAN FRANCISCO LONDON A
SUBSIDIARY OF HARCOURT BRACE JOVANOVICH , PUBLISHERS CONTENTS PREFACE ..
.. . * .. .. .. .. XI PREFACE TO FIRST EDITION .. .. .. .. .. XV CHAPTER
1 ELEMENTS OF STOCHASTIC PROCESSES 1. REVIEW OF BASIC TERMINOLOGY AND
PROPERTIES OF RANDOM VARIABLES AND DISTRIBUTION FUNCTIONS . . . . . . .
. . . 1 2. TWO SIMPLE EXAMPLES OF STOCHASTIC PROCESSES . . . . . . 20 3.
CLASSIFICATION OF GENERAL STOCHASTIC PROCESSES . . . . . . 26 4. DENNING
A STOCHASTIC PROCESS . . . . . . . . . . 32 ELEMENTARY PROBLEMS . . . .
. . . . . . 33 PROBLEMS . . . . . . . . . . . . 36 NOTES .. . . .. .. ..
.. .. 44 REFERENCES . . .. . . . . . . . . 44 CHAPTER 2 MARKOV CHAINS 1.
DEFINITIONS . . .. .. .. .. .. 45 2. EXAMPLES OF MARKOV CHAINS .. .. ..
.. .. 47 3. TRANSITION PROBABILITY MATRICES OF A MARKOV CHAIN . . . . ..
58 VI CONTENTS 4. CLASSIFICATION OF STATES OF A MARKOV CHAIN . . . . . .
.. 59 5. RECURRENCE . . . . *. . . . . . .. 62 6. EXAMPLES OF RECURRENT
MARKOV CHAINS .. . . .. .. 67 7. MORE ON RECURRENCE .. .. .. . . .. ..
72 ELEMENTARY PROBLEMS . . . . . . . . 73 PROBLEMS . . . . .. . . . . .
. 77 NOTES .. .. .. .. .. .. .. 79 REFERENCES . . . . . . .. . . . . 80
CHAPTER 3 THE BASIC LIMIT THEOREM OF MARKOV CHAINS AND APPLICATIONS 1.
DISCRETE RENEWAL EQUATION . . . . .. . . . . 81 2. PROOF OF THEOREM 1.1
.. .. .. .. .. 87 3. ABSORPTION PROBABILITIES . . . . . . . . . . 89 4.
CRITERIA FOR RECURRENCE . . . . . . . . . . 94 5. A QUEUEING EXAMPLE ..
.. .. .. .. 96 6. ANOTHER QUEUEING MODEL . . . . . . . . . . 102 7.
RANDOM WALK .. .. .. .. .. .. 106 ELEMENTARY PROBLEMS . . .. . . . . . .
108 PROBLEMS . . . . . . . . . . . . 112 NOTES .. .. .. .. .. .. .. 116
REFERENCE .. .. .. .. .. .. 116 CHAPTER 4 CLASSICAL EXAMPLES OF
CONTINUOUS TIME MARKOV CHAINS 1. GENERAL PURE BIRTH PROCESSES AND
POISSON PROCESSES .. .. .. 117 2. MORE ABOUT POISSON PROCESSES .. .. ..
.. .. 123 3. A COUNTER MODEL .. .. .. .. .. .. 128 4. BIRTH AND DEATH
PROCESSES .. .. .. .. .. 131 5. DIFFERENTIAL EQUATIONS OF BIRTH AND
DEATH PROCESSES . . . . . . 135 6. EXAMPLES OF BIRTH AND DEATH PROCESSES
. . . . . . . . 137 7. BIRTH AND DEATH PROCESSES WITH ABSORBING STATES .
. . . . . 145 8. FINITE STATE CONTINUOUS TIME MARKOV CHAINS . . . . . .
150 ELEMENTARY PROBLEMS . . . . . . . . . . 152 PROBLEMS . . . . . . . .
. . . . 158 NOTES .. .. .. .. .. .. .. 165 REFERENCES . . . . . . . . .
. .. 166 CONTENTS ~ VII CHAPTER 5 RENEWAL PROCESSES 1. DEFINITION OF A
RENEWAL PROCESS AND RELATED CONCEPTS . . . . 167 2. SOME EXAMPLES OF
RENEWAL PROCESSES .. . . . . . . 170 3. MORE ON SOME SPECIAL RENEWAL
PROCESSES . . . . . . . . 173 4. RENEWAL EQUATIONS AND THE ELEMENTARY
RENEWAL THEOREM . . . . 181 5. THE RENEWAL THEOREM .. .. .. .. . . 189
6. APPLICATIONS OF THE RENEWAL THEOREM . . . . . . . . 192 7.
GENERALIZATIONS AND VARIATIONS ON RENEWAL PROCESSES . . . . . . 197 8.
MORE ELABORATE APPLICATIONS OF RENEWAL THEORY . . . . . . 212 9.
SUPERPOSITION OF RENEWAL PROCESSES . . . . . . . . 221 ELEMENTARY
PROBLEMS . . . . . . . . . . 228 PROBLEMS . . .. . . . . . . . . 230
REFERENCE .. .. .. .. .. . . 237 CHAPTER 6 MARTINGALES 1. PRELIMINARY
DEFINITIONS AND EXAMPLES . . . . . . . . 238 2. SUPERMARTINGALES AND
SUBMARTINGALES . . . . . . . . 248 3. THE OPTIONAL SAMPLING THEOREM . .
. . . . . , 253 4. SOME APPLICATIONS OF THE OPTIONAL SAMPLING THEOREM .
. . . . . 263 5. MARTINGALE CONVERGENCE THEOREMS . . . . . . . . 278 6.
APPLICATIONS AND EXTENSIONS OF THE MARTINGALE CONVERGENCE THEOREMS . .
287 7. MARTINGALES WITH RESPECT TO 8. OTHER MARTINGALES . . . . . . . .
. . . . 313 ELEMENTARY PROBLEMS . . . . . . . . . . 325 PROBLEMS . . . .
. . .. . . . . 330 NOTES .. .. .. . . .. . X . .. 339 REFERENCES . . . .
. . . . . . . . 339 CHAPTER 7 BROWNIAN MOTION 1. BACKGROUND MATERIAL ..
.. .. .. .. 340 2. JOINT PROBABILITIES FOR BROWNIAN MOTION . . . . . . .
. 343 3. CONTINUITY OF PATHS AND THE MAXIMUM VARIABLES . . .. . . 345 4.
VARIATIONS AND EXTENSIONS . . . . . . . . .. 351 5. COMPUTING SOME
FUNCTIONALS OF BROWNIAN MOTION BY MARTINGALE METHODS . . 357 6.
MULTIDIMENSIONAL BROWNIAN MOTION .. .. . . . . 365 7. BROWNIAN PATHS . .
. . .. . . . . . . 371 VIII CONTENTS ELEMENTARY PROBLEMS .. .. .. .. ..
383 PROBLEMS . . .. . . . . .. . . 386 NOTES .. .. .. ... .. .. .. 391
REFERENCES . . . . .. .. .. .. 391 CHAPTER 8 BRANCHING PROCESSES 1.
DISCRETE TIME BRANCHING PROCESSES . . . . . . .. 392 2. GENERATING
FUNCTION RELATIONS FOR BRANCHING PROCESSES .. .. 394 3. EXTINCTION
PROBABILITIES .. .. .. .. .. 396 4. EXAMPLES .. .. .. .. .. .. 400 5.
TWO-TYPE BRANCHING PROCESSES .. .. .. .. .. 404 6. MULTI-TYPE BRANCHING
PROCESSES .. .. .. .. 411 7. CONTINUOUS TIME BRANCHING PROCESSES .. ..
.. .. 412 8. EXTINCTION PROBABILITIES FOR CONTINUOUS TIME BRANCHING
PROCESSES .. .. 416 9. LIMIT THEOREMS FOR CONTINUOUS TIME BRANCHING
PROCESSES . . . . 419 10. TWO-TYPE CONTINUOUS TIME BRANCHING PROCESS . .
. . . . 424 11. BRANCHING PROCESSES WITH GENERAL VARIABLE LIFETIME . . .
. .. 431 ELEMENTARY PROBLEMS . . . . . . . . .. 436 PROBLEMS .. .. .. ..
.. . . 4 3 8 NOTES .. .. .. .. .. .. .. 442 REFERENCE . . . . . . . . ..
. . 442 CHAPTER 9 STATIONARY PROCESSES 1. DEFINITIONS AND EXAMPLES . . .
. . . . . . . 443 2. MEAN SQUARE DISTANCE . . . . .. . . * * 451 3. MEAN
SQUARE ERROR PREDICTION .. .. .. .. .. 461 4. PREDICTION OF COVARIANCE
STATIONARY PROCESSES .. .. .. 470 5. ERGODIC THEORY AND STATIONARY
PROCESSES .. .. .. .. 474 6. APPLICATIONS OF ERGODIC THEORY .. .. .. . *
489 7. SPECTRAL ANALYSIS OF COVARIANCE STATIONARY PROCESSES .. .. ** ..
502 8. GAUSSIAN SYSTEMS . . .. . . . . . . . * 510 9. STATIONARY POINT
PROCESSES .. .. .. .. .. 516 10. THE LEVEL-CROSSING PROBLEM . . . . . .
. . . . 519 ELEMENTARY PROBLEMS . . . . . . .. . . 524 PROBLEMS .. .. ..
.. . . . . 527 NOTES .. .. .. .. .. .. .. 534 REFERENCES .. .. .. .. * *
* * 535 CONTENTS ~ IX APPENDIX REVIEW OF MATRIX ANALYSIS 1. THE SPECTRAL
THEOREM .. .. .. .. .. 536 2. THE FROBENIUS THEORY OF POSITIVE MATRICES
.. .. .. .. 542 INDEX .. .. .. .. . * .* * * 553
|
any_adam_object | 1 |
author | Karlin, Samuel 1924-2007 Taylor, Howard M. |
author_GND | (DE-588)118918672 |
author_facet | Karlin, Samuel 1924-2007 Taylor, Howard M. |
author_role | aut aut |
author_sort | Karlin, Samuel 1924-2007 |
author_variant | s k sk h m t hm hmt |
building | Verbundindex |
bvnumber | BV003477775 |
callnumber-first | Q - Science |
callnumber-label | QA274 |
callnumber-raw | QA274 |
callnumber-search | QA274 |
callnumber-sort | QA 3274 |
callnumber-subject | QA - Mathematics |
classification_rvk | QH 237 SK 820 |
ctrlnum | (OCoLC)5175157 (DE-599)BVBBV003477775 |
dewey-full | 519.2 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 519 - Probabilities and applied mathematics |
dewey-raw | 519.2 |
dewey-search | 519.2 |
dewey-sort | 3519.2 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik Wirtschaftswissenschaften |
edition | 2. ed. |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01487nam a2200397 c 4500</leader><controlfield tag="001">BV003477775</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20180817 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">900725s1975 d||| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0123985536</subfield><subfield code="9">0-12-398553-6</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)5175157</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV003477775</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-19</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA274</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">519.2</subfield><subfield code="2">19</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">QH 237</subfield><subfield code="0">(DE-625)141552:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 820</subfield><subfield code="0">(DE-625)143258:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Karlin, Samuel</subfield><subfield code="d">1924-2007</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)118918672</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Solutions to problems: A first course in stochastic processes</subfield><subfield code="c">Samuel Karlin ; Howard M. Taylor</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">2. ed.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York [u.a.]</subfield><subfield code="b">Acad. Press</subfield><subfield code="c">[1975]</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">92 S.</subfield><subfield code="b">graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Erscheinungsjahr ermittelt</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Stochastic processes</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Stochastischer Prozess</subfield><subfield code="0">(DE-588)4057630-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Stochastischer Prozess</subfield><subfield code="0">(DE-588)4057630-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Taylor, Howard M.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HEBIS Datenaustausch Mainz</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=002203072&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-002203072</subfield></datafield></record></collection> |
id | DE-604.BV003477775 |
illustrated | Illustrated |
indexdate | 2024-07-09T16:00:32Z |
institution | BVB |
isbn | 0123985536 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-002203072 |
oclc_num | 5175157 |
open_access_boolean | |
owner | DE-384 DE-19 DE-BY-UBM |
owner_facet | DE-384 DE-19 DE-BY-UBM |
physical | 92 S. graph. Darst. |
publishDate | 1975 |
publishDateSearch | 1975 |
publishDateSort | 1975 |
publisher | Acad. Press |
record_format | marc |
spelling | Karlin, Samuel 1924-2007 Verfasser (DE-588)118918672 aut Solutions to problems: A first course in stochastic processes Samuel Karlin ; Howard M. Taylor 2. ed. New York [u.a.] Acad. Press [1975] 92 S. graph. Darst. txt rdacontent n rdamedia nc rdacarrier Erscheinungsjahr ermittelt Stochastic processes Stochastischer Prozess (DE-588)4057630-9 gnd rswk-swf Stochastischer Prozess (DE-588)4057630-9 s DE-604 Taylor, Howard M. Verfasser aut HEBIS Datenaustausch Mainz application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=002203072&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Karlin, Samuel 1924-2007 Taylor, Howard M. Solutions to problems: A first course in stochastic processes Stochastic processes Stochastischer Prozess (DE-588)4057630-9 gnd |
subject_GND | (DE-588)4057630-9 |
title | Solutions to problems: A first course in stochastic processes |
title_auth | Solutions to problems: A first course in stochastic processes |
title_exact_search | Solutions to problems: A first course in stochastic processes |
title_full | Solutions to problems: A first course in stochastic processes Samuel Karlin ; Howard M. Taylor |
title_fullStr | Solutions to problems: A first course in stochastic processes Samuel Karlin ; Howard M. Taylor |
title_full_unstemmed | Solutions to problems: A first course in stochastic processes Samuel Karlin ; Howard M. Taylor |
title_short | Solutions to problems: A first course in stochastic processes |
title_sort | solutions to problems a first course in stochastic processes |
topic | Stochastic processes Stochastischer Prozess (DE-588)4057630-9 gnd |
topic_facet | Stochastic processes Stochastischer Prozess |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=002203072&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT karlinsamuel solutionstoproblemsafirstcourseinstochasticprocesses AT taylorhowardm solutionstoproblemsafirstcourseinstochasticprocesses |