Finite groups whose 2-subgroups are generated by at most 4 elements:
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Providence, R.I.
American Mathematical Society
1974
|
Schriftenreihe: | American Mathematical Society: Memoirs of the American Mathematical Society
147 |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | VII, 464 S. |
ISBN: | 0821818473 |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV003052618 | ||
003 | DE-604 | ||
005 | 20160215 | ||
007 | t | ||
008 | 900725s1974 |||| 00||| eng d | ||
020 | |a 0821818473 |9 0-8218-1847-3 | ||
035 | |a (OCoLC)224999773 | ||
035 | |a (DE-599)BVBBV003052618 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-29T |a DE-739 |a DE-19 |a DE-12 |a DE-703 |a DE-355 |a DE-91G |a DE-83 |a DE-188 | ||
050 | 0 | |a QA171 | |
050 | 0 | |a QA3 | |
082 | 0 | |a 510/.8 | |
082 | 0 | |a 512/.2 | |
084 | |a SK 260 |0 (DE-625)143227: |2 rvk | ||
084 | |a 20D05 |2 msc | ||
100 | 1 | |a Gorenstein, Daniel |e Verfasser |4 aut | |
245 | 1 | 0 | |a Finite groups whose 2-subgroups are generated by at most 4 elements |c Daniel Gorenstein and Koichiro Harada |
264 | 1 | |a Providence, R.I. |b American Mathematical Society |c 1974 | |
300 | |a VII, 464 S. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a American Mathematical Society: Memoirs of the American Mathematical Society |v 147 | |
650 | 4 | |a Groupes finis | |
650 | 7 | |a Groupes finis |2 ram | |
650 | 0 | 7 | |a Endliche Gruppe |0 (DE-588)4014651-0 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Endliche Gruppe |0 (DE-588)4014651-0 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Harada, Kōichirō |d 1941- |e Verfasser |0 (DE-588)1018107312 |4 aut | |
830 | 0 | |a American Mathematical Society: Memoirs of the American Mathematical Society |v 147 |w (DE-604)BV008000141 |9 147 | |
856 | 4 | 2 | |m HBZ Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=001912652&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
940 | 1 | |q TUB-www | |
999 | |a oai:aleph.bib-bvb.de:BVB01-001912652 | ||
980 | 4 | |a (DE-12)AK8330349 | |
980 | 4 | |a (DE-12)AK09130576 |
Datensatz im Suchindex
_version_ | 1804117341381853184 |
---|---|
adam_text | TABLE OF CONTENTS
INTRODUCTION 1
PART I: SOLVABLE 2 LOCAL SUBGROUPS
1. Introduction 9
2. The minimal counterexample 10
3. Odd order groups acting on 2 groups 14
^. The local subgroups of G 29
5. The structure of 02(M) 41
6. The case CR(B) / 1 50
7. Proof of Theorem A 57
PART II: 2 CONSTRAINED 2 LOCAL SUBGROUPS
1. Introduction 68
2. The automorphism groups of certain 2 groups 70
3. Theorem B, the GL(3,2) case 83
•+. Theorem B, the A_ case 103
5. Theorems C and D, initial reduction 105
6. Theorems C and D, the A_ case 113
7. Theorems C and D, the GL(3,2) case 122
PART III: NON 2 CONSTRAINED CENTRALIZERS OF INVOLUTIONS; SOME SPECIAL CASES
1. Introduction 134
2. Theorem A 138
3. The e(8) case 141
h. The A* case 146
6. Some lemmas 162
7. The SLCsq), SU(^,q), Sp(^jq) cases 178
8. The direct product case 187
9. The central product case 200
iii
PART IV: A CHARACTERIZATION OF THE GROUP D^(3)
1. Introduction 219
2. Preliminary lemmas 221
3. The centralizer of a central involution 232
k. The intersection of W and its conjugates 239
5. The normal four subgroup case 247
6. The cyclic case 259
7. The maximal class case 268
PART V: CENTRAL INVOLUTIONS WITH NON 2 CONSTRAINED CENTRALIZERS
1. Introduction 275
2. Initial reductions 276
3. Theorem A; the wreathed case 278
k. Preliminary results 281
5. Maximal elementary abelian 2 subgroups 296
6. Fusion of involutions 307
7. Theorem A; the dihedral and quasi dihedral cases 317
PART VI: A CHARACTERIZATION OF THE GROUP M^
1. Introduction 338
2. 2 groups and their automorphism groups 339
3. Some 2 groups associated with Aut(Z^ x Z, ) 355
k. Initial reductions 369
5. Elimination of the rank 3 case 371
6. The major reduction 376
7. The non dihedral case 401
8. The noncyclic case 414
9. The structure of O2(H) 424
10. The structure of S 447
|
any_adam_object | 1 |
author | Gorenstein, Daniel Harada, Kōichirō 1941- |
author_GND | (DE-588)1018107312 |
author_facet | Gorenstein, Daniel Harada, Kōichirō 1941- |
author_role | aut aut |
author_sort | Gorenstein, Daniel |
author_variant | d g dg k h kh |
building | Verbundindex |
bvnumber | BV003052618 |
callnumber-first | Q - Science |
callnumber-label | QA171 |
callnumber-raw | QA171 QA3 |
callnumber-search | QA171 QA3 |
callnumber-sort | QA 3171 |
callnumber-subject | QA - Mathematics |
classification_rvk | SK 260 |
ctrlnum | (OCoLC)224999773 (DE-599)BVBBV003052618 |
dewey-full | 510/.8 512/.2 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 510 - Mathematics 512 - Algebra |
dewey-raw | 510/.8 512/.2 |
dewey-search | 510/.8 512/.2 |
dewey-sort | 3510 18 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01845nam a2200469 cb4500</leader><controlfield tag="001">BV003052618</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20160215 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">900725s1974 |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0821818473</subfield><subfield code="9">0-8218-1847-3</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)224999773</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV003052618</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-29T</subfield><subfield code="a">DE-739</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-12</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-91G</subfield><subfield code="a">DE-83</subfield><subfield code="a">DE-188</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA171</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA3</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">510/.8</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">512/.2</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 260</subfield><subfield code="0">(DE-625)143227:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">20D05</subfield><subfield code="2">msc</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Gorenstein, Daniel</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Finite groups whose 2-subgroups are generated by at most 4 elements</subfield><subfield code="c">Daniel Gorenstein and Koichiro Harada</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Providence, R.I.</subfield><subfield code="b">American Mathematical Society</subfield><subfield code="c">1974</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">VII, 464 S.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">American Mathematical Society: Memoirs of the American Mathematical Society</subfield><subfield code="v">147</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Groupes finis</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Groupes finis</subfield><subfield code="2">ram</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Endliche Gruppe</subfield><subfield code="0">(DE-588)4014651-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Endliche Gruppe</subfield><subfield code="0">(DE-588)4014651-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Harada, Kōichirō</subfield><subfield code="d">1941-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1018107312</subfield><subfield code="4">aut</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">American Mathematical Society: Memoirs of the American Mathematical Society</subfield><subfield code="v">147</subfield><subfield code="w">(DE-604)BV008000141</subfield><subfield code="9">147</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HBZ Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=001912652&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">TUB-www</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-001912652</subfield></datafield><datafield tag="980" ind1="4" ind2=" "><subfield code="a">(DE-12)AK8330349</subfield></datafield><datafield tag="980" ind1="4" ind2=" "><subfield code="a">(DE-12)AK09130576</subfield></datafield></record></collection> |
id | DE-604.BV003052618 |
illustrated | Not Illustrated |
indexdate | 2024-07-09T15:52:52Z |
institution | BVB |
isbn | 0821818473 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-001912652 |
oclc_num | 224999773 |
open_access_boolean | |
owner | DE-384 DE-29T DE-739 DE-19 DE-BY-UBM DE-12 DE-703 DE-355 DE-BY-UBR DE-91G DE-BY-TUM DE-83 DE-188 |
owner_facet | DE-384 DE-29T DE-739 DE-19 DE-BY-UBM DE-12 DE-703 DE-355 DE-BY-UBR DE-91G DE-BY-TUM DE-83 DE-188 |
physical | VII, 464 S. |
psigel | TUB-www |
publishDate | 1974 |
publishDateSearch | 1974 |
publishDateSort | 1974 |
publisher | American Mathematical Society |
record_format | marc |
series | American Mathematical Society: Memoirs of the American Mathematical Society |
series2 | American Mathematical Society: Memoirs of the American Mathematical Society |
spelling | Gorenstein, Daniel Verfasser aut Finite groups whose 2-subgroups are generated by at most 4 elements Daniel Gorenstein and Koichiro Harada Providence, R.I. American Mathematical Society 1974 VII, 464 S. txt rdacontent n rdamedia nc rdacarrier American Mathematical Society: Memoirs of the American Mathematical Society 147 Groupes finis Groupes finis ram Endliche Gruppe (DE-588)4014651-0 gnd rswk-swf Endliche Gruppe (DE-588)4014651-0 s DE-604 Harada, Kōichirō 1941- Verfasser (DE-588)1018107312 aut American Mathematical Society: Memoirs of the American Mathematical Society 147 (DE-604)BV008000141 147 HBZ Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=001912652&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Gorenstein, Daniel Harada, Kōichirō 1941- Finite groups whose 2-subgroups are generated by at most 4 elements American Mathematical Society: Memoirs of the American Mathematical Society Groupes finis Groupes finis ram Endliche Gruppe (DE-588)4014651-0 gnd |
subject_GND | (DE-588)4014651-0 |
title | Finite groups whose 2-subgroups are generated by at most 4 elements |
title_auth | Finite groups whose 2-subgroups are generated by at most 4 elements |
title_exact_search | Finite groups whose 2-subgroups are generated by at most 4 elements |
title_full | Finite groups whose 2-subgroups are generated by at most 4 elements Daniel Gorenstein and Koichiro Harada |
title_fullStr | Finite groups whose 2-subgroups are generated by at most 4 elements Daniel Gorenstein and Koichiro Harada |
title_full_unstemmed | Finite groups whose 2-subgroups are generated by at most 4 elements Daniel Gorenstein and Koichiro Harada |
title_short | Finite groups whose 2-subgroups are generated by at most 4 elements |
title_sort | finite groups whose 2 subgroups are generated by at most 4 elements |
topic | Groupes finis Groupes finis ram Endliche Gruppe (DE-588)4014651-0 gnd |
topic_facet | Groupes finis Endliche Gruppe |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=001912652&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
volume_link | (DE-604)BV008000141 |
work_keys_str_mv | AT gorensteindaniel finitegroupswhose2subgroupsaregeneratedbyatmost4elements AT haradakoichiro finitegroupswhose2subgroupsaregeneratedbyatmost4elements |