Tensor products of principal series representations: reduction of tensor products of principal series representations of complex semisimple Lie groups
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Berlin [u.a.]
Springer
1973
|
Schriftenreihe: | Lecture notes in mathematics
358 |
Schlagworte: | |
Beschreibung: | 132 S. |
ISBN: | 3540065679 0387065679 |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV003045566 | ||
003 | DE-604 | ||
005 | 20120823 | ||
007 | t | ||
008 | 900725s1973 |||| 00||| eng d | ||
020 | |a 3540065679 |9 3-540-06567-9 | ||
020 | |a 0387065679 |9 0-387-06567-9 | ||
035 | |a (OCoLC)721186773 | ||
035 | |a (DE-599)BVBBV003045566 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-384 |a DE-91G |a DE-355 |a DE-20 |a DE-824 |a DE-29T |a DE-19 |a DE-83 |a DE-188 |a DE-706 |a DE-11 |a DE-210 | ||
050 | 0 | |a QA3 | |
082 | 0 | |a 512/.55 | |
082 | 0 | |a 510/.8 | |
084 | |a SI 850 |0 (DE-625)143199: |2 rvk | ||
084 | |a 22E45 |2 msc | ||
100 | 1 | |a Williams, Floyd L. |d 1939- |e Verfasser |0 (DE-588)107924005 |4 aut | |
245 | 1 | 0 | |a Tensor products of principal series representations |b reduction of tensor products of principal series representations of complex semisimple Lie groups |c Floyd L. Williams |
264 | 1 | |a Berlin [u.a.] |b Springer |c 1973 | |
300 | |a 132 S. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Lecture notes in mathematics |v 358 | |
650 | 4 | |a Groupes, Représentation des | |
650 | 4 | |a Lie, Groupes de | |
650 | 4 | |a Produits tensoriels | |
650 | 4 | |a Representations of Lie groups | |
650 | 4 | |a Semisimple Lie groups | |
650 | 4 | |a Series | |
650 | 4 | |a Tensor products | |
650 | 0 | 7 | |a Darstellungstheorie |0 (DE-588)4148816-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Lie-Gruppe |0 (DE-588)4035695-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Tensorprodukt |0 (DE-588)4059478-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Hauptreihe |g Mathematik |0 (DE-588)4319092-3 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Hauptreihe |g Mathematik |0 (DE-588)4319092-3 |D s |
689 | 0 | 1 | |a Tensorprodukt |0 (DE-588)4059478-6 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Lie-Gruppe |0 (DE-588)4035695-4 |D s |
689 | 1 | 1 | |a Darstellungstheorie |0 (DE-588)4148816-7 |D s |
689 | 1 | |5 DE-604 | |
830 | 0 | |a Lecture notes in mathematics |v 358 |w (DE-604)BV000676446 |9 358 | |
940 | 1 | |q HUB-ZB011201206 | |
999 | |a oai:aleph.bib-bvb.de:BVB01-001907724 | ||
980 | 4 | |a (DE-12)AK24100470 |
Datensatz im Suchindex
_version_ | 1804117334726541312 |
---|---|
any_adam_object | |
author | Williams, Floyd L. 1939- |
author_GND | (DE-588)107924005 |
author_facet | Williams, Floyd L. 1939- |
author_role | aut |
author_sort | Williams, Floyd L. 1939- |
author_variant | f l w fl flw |
building | Verbundindex |
bvnumber | BV003045566 |
callnumber-first | Q - Science |
callnumber-label | QA3 |
callnumber-raw | QA3 |
callnumber-search | QA3 |
callnumber-sort | QA 13 |
callnumber-subject | QA - Mathematics |
classification_rvk | SI 850 |
ctrlnum | (OCoLC)721186773 (DE-599)BVBBV003045566 |
dewey-full | 512/.55 510/.8 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 512 - Algebra 510 - Mathematics |
dewey-raw | 512/.55 510/.8 |
dewey-search | 512/.55 510/.8 |
dewey-sort | 3512 255 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02084nam a2200577 cb4500</leader><controlfield tag="001">BV003045566</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20120823 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">900725s1973 |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3540065679</subfield><subfield code="9">3-540-06567-9</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0387065679</subfield><subfield code="9">0-387-06567-9</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)721186773</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV003045566</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-384</subfield><subfield code="a">DE-91G</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-824</subfield><subfield code="a">DE-29T</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-83</subfield><subfield code="a">DE-188</subfield><subfield code="a">DE-706</subfield><subfield code="a">DE-11</subfield><subfield code="a">DE-210</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA3</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">512/.55</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">510/.8</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SI 850</subfield><subfield code="0">(DE-625)143199:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">22E45</subfield><subfield code="2">msc</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Williams, Floyd L.</subfield><subfield code="d">1939-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)107924005</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Tensor products of principal series representations</subfield><subfield code="b">reduction of tensor products of principal series representations of complex semisimple Lie groups</subfield><subfield code="c">Floyd L. Williams</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin [u.a.]</subfield><subfield code="b">Springer</subfield><subfield code="c">1973</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">132 S.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Lecture notes in mathematics</subfield><subfield code="v">358</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Groupes, Représentation des</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Lie, Groupes de</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Produits tensoriels</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Representations of Lie groups</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Semisimple Lie groups</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Series</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Tensor products</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Darstellungstheorie</subfield><subfield code="0">(DE-588)4148816-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Lie-Gruppe</subfield><subfield code="0">(DE-588)4035695-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Tensorprodukt</subfield><subfield code="0">(DE-588)4059478-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Hauptreihe</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4319092-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Hauptreihe</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4319092-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Tensorprodukt</subfield><subfield code="0">(DE-588)4059478-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Lie-Gruppe</subfield><subfield code="0">(DE-588)4035695-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Darstellungstheorie</subfield><subfield code="0">(DE-588)4148816-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Lecture notes in mathematics</subfield><subfield code="v">358</subfield><subfield code="w">(DE-604)BV000676446</subfield><subfield code="9">358</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">HUB-ZB011201206</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-001907724</subfield></datafield><datafield tag="980" ind1="4" ind2=" "><subfield code="a">(DE-12)AK24100470</subfield></datafield></record></collection> |
id | DE-604.BV003045566 |
illustrated | Not Illustrated |
indexdate | 2024-07-09T15:52:45Z |
institution | BVB |
isbn | 3540065679 0387065679 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-001907724 |
oclc_num | 721186773 |
open_access_boolean | |
owner | DE-12 DE-384 DE-91G DE-BY-TUM DE-355 DE-BY-UBR DE-20 DE-824 DE-29T DE-19 DE-BY-UBM DE-83 DE-188 DE-706 DE-11 DE-210 |
owner_facet | DE-12 DE-384 DE-91G DE-BY-TUM DE-355 DE-BY-UBR DE-20 DE-824 DE-29T DE-19 DE-BY-UBM DE-83 DE-188 DE-706 DE-11 DE-210 |
physical | 132 S. |
psigel | HUB-ZB011201206 |
publishDate | 1973 |
publishDateSearch | 1973 |
publishDateSort | 1973 |
publisher | Springer |
record_format | marc |
series | Lecture notes in mathematics |
series2 | Lecture notes in mathematics |
spelling | Williams, Floyd L. 1939- Verfasser (DE-588)107924005 aut Tensor products of principal series representations reduction of tensor products of principal series representations of complex semisimple Lie groups Floyd L. Williams Berlin [u.a.] Springer 1973 132 S. txt rdacontent n rdamedia nc rdacarrier Lecture notes in mathematics 358 Groupes, Représentation des Lie, Groupes de Produits tensoriels Representations of Lie groups Semisimple Lie groups Series Tensor products Darstellungstheorie (DE-588)4148816-7 gnd rswk-swf Lie-Gruppe (DE-588)4035695-4 gnd rswk-swf Tensorprodukt (DE-588)4059478-6 gnd rswk-swf Hauptreihe Mathematik (DE-588)4319092-3 gnd rswk-swf Hauptreihe Mathematik (DE-588)4319092-3 s Tensorprodukt (DE-588)4059478-6 s DE-604 Lie-Gruppe (DE-588)4035695-4 s Darstellungstheorie (DE-588)4148816-7 s Lecture notes in mathematics 358 (DE-604)BV000676446 358 |
spellingShingle | Williams, Floyd L. 1939- Tensor products of principal series representations reduction of tensor products of principal series representations of complex semisimple Lie groups Lecture notes in mathematics Groupes, Représentation des Lie, Groupes de Produits tensoriels Representations of Lie groups Semisimple Lie groups Series Tensor products Darstellungstheorie (DE-588)4148816-7 gnd Lie-Gruppe (DE-588)4035695-4 gnd Tensorprodukt (DE-588)4059478-6 gnd Hauptreihe Mathematik (DE-588)4319092-3 gnd |
subject_GND | (DE-588)4148816-7 (DE-588)4035695-4 (DE-588)4059478-6 (DE-588)4319092-3 |
title | Tensor products of principal series representations reduction of tensor products of principal series representations of complex semisimple Lie groups |
title_auth | Tensor products of principal series representations reduction of tensor products of principal series representations of complex semisimple Lie groups |
title_exact_search | Tensor products of principal series representations reduction of tensor products of principal series representations of complex semisimple Lie groups |
title_full | Tensor products of principal series representations reduction of tensor products of principal series representations of complex semisimple Lie groups Floyd L. Williams |
title_fullStr | Tensor products of principal series representations reduction of tensor products of principal series representations of complex semisimple Lie groups Floyd L. Williams |
title_full_unstemmed | Tensor products of principal series representations reduction of tensor products of principal series representations of complex semisimple Lie groups Floyd L. Williams |
title_short | Tensor products of principal series representations |
title_sort | tensor products of principal series representations reduction of tensor products of principal series representations of complex semisimple lie groups |
title_sub | reduction of tensor products of principal series representations of complex semisimple Lie groups |
topic | Groupes, Représentation des Lie, Groupes de Produits tensoriels Representations of Lie groups Semisimple Lie groups Series Tensor products Darstellungstheorie (DE-588)4148816-7 gnd Lie-Gruppe (DE-588)4035695-4 gnd Tensorprodukt (DE-588)4059478-6 gnd Hauptreihe Mathematik (DE-588)4319092-3 gnd |
topic_facet | Groupes, Représentation des Lie, Groupes de Produits tensoriels Representations of Lie groups Semisimple Lie groups Series Tensor products Darstellungstheorie Lie-Gruppe Tensorprodukt Hauptreihe Mathematik |
volume_link | (DE-604)BV000676446 |
work_keys_str_mv | AT williamsfloydl tensorproductsofprincipalseriesrepresentationsreductionoftensorproductsofprincipalseriesrepresentationsofcomplexsemisimpleliegroups |