A geometric introduction to topology:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Reading, Mass.
Addison-Wesley
1972
|
Schriftenreihe: | Addison-Wesley series in mathematics.
|
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | VI, 168 S. Ill., graph. Darst. |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV003017300 | ||
003 | DE-604 | ||
005 | 19990622 | ||
007 | t | ||
008 | 900725s1972 ad|| |||| 00||| eng d | ||
035 | |a (OCoLC)375528 | ||
035 | |a (DE-599)BVBBV003017300 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-91G |a DE-703 |a DE-355 |a DE-29T |a DE-20 |a DE-706 |a DE-83 | ||
050 | 0 | |a QA612 | |
082 | 0 | |a 514/.2 | |
084 | |a SK 280 |0 (DE-625)143228: |2 rvk | ||
084 | |a SK 350 |0 (DE-625)143233: |2 rvk | ||
084 | |a 55-01 |2 msc | ||
100 | 1 | |a Wall, C. T. C. |d 1936- |e Verfasser |0 (DE-588)107575256 |4 aut | |
245 | 1 | 0 | |a A geometric introduction to topology |c C. T. C. Wall |
264 | 1 | |a Reading, Mass. |b Addison-Wesley |c 1972 | |
300 | |a VI, 168 S. |b Ill., graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 0 | |a Addison-Wesley series in mathematics. | |
650 | 7 | |a Homotopia |2 larpcal | |
650 | 7 | |a Topologia |2 larpcal | |
650 | 4 | |a Topologie algébrique | |
650 | 4 | |a Algebraic topology | |
650 | 0 | 7 | |a Geometrie |0 (DE-588)4020236-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Algebraische Topologie |0 (DE-588)4120861-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Topologie |0 (DE-588)4060425-1 |2 gnd |9 rswk-swf |
655 | 7 | |0 (DE-588)4151278-9 |a Einführung |2 gnd-content | |
689 | 0 | 0 | |a Topologie |0 (DE-588)4060425-1 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Geometrie |0 (DE-588)4020236-7 |D s |
689 | 1 | 1 | |a Topologie |0 (DE-588)4060425-1 |D s |
689 | 1 | |5 DE-604 | |
689 | 2 | 0 | |a Algebraische Topologie |0 (DE-588)4120861-4 |D s |
689 | 2 | |5 DE-604 | |
856 | 4 | 2 | |m HBZ Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=001888968&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-001888968 |
Datensatz im Suchindex
_version_ | 1804117306088882176 |
---|---|
adam_text | CONTENTS
PART 0 PRELIMINARIES
Chapter 0 Notations and Prerequisites
Numbers 1 ? Sets and maps 1 ? Equivalence relations 3
Chapter 1 Spaces and Continuous Maps
Introduction 5 ? Continuity 5 ? Homeomorphism 7 ?
Neighborhoods, open and closed sets 11 ? Compactness 15
Chapter 2 Abelian Groups
Introduction 21 ? Definitions 21 ? Direct sums 23 ? Exact
sequences 27 Q Free abelian groups 31
PART 1 INTRODUCTION TO HOMOTOPY THEORY
Chapter 3 Connected and Disconnected Spaces
Introduction 41 ? Connectedness 41 ? Path connectedness 43 ?
Local path connectedness 45
Chapter 4 More about Connection
Introduction 49 D The group H°(X) 49 ? The set no(X) 50D
The group H0(X) 53
Chapter 5 Definition of Homotopy
Introduction 57 ? Definition of homotopy 57 ? Homotopy
equivalence 60 ? Homotopy sets; the groups H^X) 61
Chapter 6 A Study of a Circle
Introduction 65 ? Lifting maps from S1 up to R 65 ? The degree of a
map 68 ? Applications 70
Chapter 7 Lifting and Extension Problems
Introduction 74 ? The lifting problem 75 ? The extension problem 79
Chapter 8 Calculations
Introduction 84 ? The Mayer Vietoris theorem 84 D First calculations
87 D Graphs 90 ? Products 91
v
vi Contents
PART 2 THE DUALITY THEOREM
Chapter 9 Eilenberg s Separation Criterion
Introduction 99 ? Complementary components 99 ? Separation of
points by compact plane sets 100
Chapter 10 The Duality Map
Introduction 104 ? Construction of the duality map 104 ?
Proof of injectivity 106
Chapter 11 Proof of the Duality Theorem
Introduction 111 ? An extension theorem 113 ? Naturality 116 ?
Proof in some special cases 116 Q End of the proof 119
Chapter 12 Remarks on the Proof
Introduction 122 ? The extended plane 122 ? Reformulation of
preceding chapters 124 ? The Hopf map 125
PART 3 FURTHER RESULTS IN THE TOPOLOGY OF PLANE SETS
Chapter 13 The Jordan Curve Theorem
Introduction 133 ? Theta curves 133 ? First alternative proof (after
Dieudonne) 135 D Point sets in R and S 137 ? Second alternative
proof (after Doyle) 139 D Invariance of (plane) domains 140
Chapter 14 Further Duality Properties
Introduction 143 ? The group H^X) 143 D Properties ofH^X) 146 D
Duality 147 ? Plane domains 148
Chapter 15 Geometric Integration Theory
Introduction 153 ? Line integrals in R2 153 D Green s theorem 154 ?
Reformulation in terms of homology 157 ? The three dimensional
case 160 D The complex case 162
Index of Terms
165
Index of Notation
168
|
any_adam_object | 1 |
author | Wall, C. T. C. 1936- |
author_GND | (DE-588)107575256 |
author_facet | Wall, C. T. C. 1936- |
author_role | aut |
author_sort | Wall, C. T. C. 1936- |
author_variant | c t c w ctc ctcw |
building | Verbundindex |
bvnumber | BV003017300 |
callnumber-first | Q - Science |
callnumber-label | QA612 |
callnumber-raw | QA612 |
callnumber-search | QA612 |
callnumber-sort | QA 3612 |
callnumber-subject | QA - Mathematics |
classification_rvk | SK 280 SK 350 |
ctrlnum | (OCoLC)375528 (DE-599)BVBBV003017300 |
dewey-full | 514/.2 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 514 - Topology |
dewey-raw | 514/.2 |
dewey-search | 514/.2 |
dewey-sort | 3514 12 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01888nam a2200505 c 4500</leader><controlfield tag="001">BV003017300</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">19990622 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">900725s1972 ad|| |||| 00||| eng d</controlfield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)375528</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV003017300</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-91G</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-29T</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-706</subfield><subfield code="a">DE-83</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA612</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">514/.2</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 280</subfield><subfield code="0">(DE-625)143228:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 350</subfield><subfield code="0">(DE-625)143233:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">55-01</subfield><subfield code="2">msc</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Wall, C. T. C.</subfield><subfield code="d">1936-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)107575256</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">A geometric introduction to topology</subfield><subfield code="c">C. T. C. Wall</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Reading, Mass.</subfield><subfield code="b">Addison-Wesley</subfield><subfield code="c">1972</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">VI, 168 S.</subfield><subfield code="b">Ill., graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Addison-Wesley series in mathematics.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Homotopia</subfield><subfield code="2">larpcal</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Topologia</subfield><subfield code="2">larpcal</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Topologie algébrique</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Algebraic topology</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Geometrie</subfield><subfield code="0">(DE-588)4020236-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Algebraische Topologie</subfield><subfield code="0">(DE-588)4120861-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Topologie</subfield><subfield code="0">(DE-588)4060425-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="0">(DE-588)4151278-9</subfield><subfield code="a">Einführung</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Topologie</subfield><subfield code="0">(DE-588)4060425-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Geometrie</subfield><subfield code="0">(DE-588)4020236-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Topologie</subfield><subfield code="0">(DE-588)4060425-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Algebraische Topologie</subfield><subfield code="0">(DE-588)4120861-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HBZ Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=001888968&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-001888968</subfield></datafield></record></collection> |
genre | (DE-588)4151278-9 Einführung gnd-content |
genre_facet | Einführung |
id | DE-604.BV003017300 |
illustrated | Illustrated |
indexdate | 2024-07-09T15:52:18Z |
institution | BVB |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-001888968 |
oclc_num | 375528 |
open_access_boolean | |
owner | DE-384 DE-91G DE-BY-TUM DE-703 DE-355 DE-BY-UBR DE-29T DE-20 DE-706 DE-83 |
owner_facet | DE-384 DE-91G DE-BY-TUM DE-703 DE-355 DE-BY-UBR DE-29T DE-20 DE-706 DE-83 |
physical | VI, 168 S. Ill., graph. Darst. |
publishDate | 1972 |
publishDateSearch | 1972 |
publishDateSort | 1972 |
publisher | Addison-Wesley |
record_format | marc |
series2 | Addison-Wesley series in mathematics. |
spelling | Wall, C. T. C. 1936- Verfasser (DE-588)107575256 aut A geometric introduction to topology C. T. C. Wall Reading, Mass. Addison-Wesley 1972 VI, 168 S. Ill., graph. Darst. txt rdacontent n rdamedia nc rdacarrier Addison-Wesley series in mathematics. Homotopia larpcal Topologia larpcal Topologie algébrique Algebraic topology Geometrie (DE-588)4020236-7 gnd rswk-swf Algebraische Topologie (DE-588)4120861-4 gnd rswk-swf Topologie (DE-588)4060425-1 gnd rswk-swf (DE-588)4151278-9 Einführung gnd-content Topologie (DE-588)4060425-1 s DE-604 Geometrie (DE-588)4020236-7 s Algebraische Topologie (DE-588)4120861-4 s HBZ Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=001888968&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Wall, C. T. C. 1936- A geometric introduction to topology Homotopia larpcal Topologia larpcal Topologie algébrique Algebraic topology Geometrie (DE-588)4020236-7 gnd Algebraische Topologie (DE-588)4120861-4 gnd Topologie (DE-588)4060425-1 gnd |
subject_GND | (DE-588)4020236-7 (DE-588)4120861-4 (DE-588)4060425-1 (DE-588)4151278-9 |
title | A geometric introduction to topology |
title_auth | A geometric introduction to topology |
title_exact_search | A geometric introduction to topology |
title_full | A geometric introduction to topology C. T. C. Wall |
title_fullStr | A geometric introduction to topology C. T. C. Wall |
title_full_unstemmed | A geometric introduction to topology C. T. C. Wall |
title_short | A geometric introduction to topology |
title_sort | a geometric introduction to topology |
topic | Homotopia larpcal Topologia larpcal Topologie algébrique Algebraic topology Geometrie (DE-588)4020236-7 gnd Algebraische Topologie (DE-588)4120861-4 gnd Topologie (DE-588)4060425-1 gnd |
topic_facet | Homotopia Topologia Topologie algébrique Algebraic topology Geometrie Algebraische Topologie Topologie Einführung |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=001888968&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT wallctc ageometricintroductiontotopology |