Eigenfunction branches of nonlinear operators, and their bifurcations:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Berlin [u.a.]
Springer
1969
|
Schriftenreihe: | Lecture notes in mathematics
104 |
Schlagworte: | |
Beschreibung: | 128 S. |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV002968570 | ||
003 | DE-604 | ||
005 | 20080602 | ||
007 | t | ||
008 | 900725s1969 |||| 00||| eng d | ||
035 | |a (OCoLC)603103313 | ||
035 | |a (DE-599)BVBBV002968570 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-91G |a DE-355 |a DE-20 |a DE-824 |a DE-29T |a DE-703 |a DE-19 |a DE-83 |a DE-11 |a DE-188 |a DE-210 | ||
050 | 0 | |a QA3 | |
082 | 0 | |a 517/.38 | |
084 | |a QH 150 |0 (DE-625)141534: |2 rvk | ||
084 | |a SI 850 |0 (DE-625)143199: |2 rvk | ||
084 | |a SK 640 |0 (DE-625)143250: |2 rvk | ||
084 | |a 47H15 |2 msc | ||
100 | 1 | |a Pimbley, George Herbert |e Verfasser |4 aut | |
245 | 1 | 0 | |a Eigenfunction branches of nonlinear operators, and their bifurcations |c George H. Pimbley |
264 | 1 | |a Berlin [u.a.] |b Springer |c 1969 | |
300 | |a 128 S. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Lecture notes in mathematics |v 104 | |
650 | 4 | |a Opérateurs non linéaires | |
650 | 4 | |a Nonlinear operators | |
650 | 0 | 7 | |a Verzweigung |g Mathematik |0 (DE-588)4078889-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Nichtlinearer Operator |0 (DE-588)4225824-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Eigenfunktion |0 (DE-588)4151167-0 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Nichtlinearer Operator |0 (DE-588)4225824-8 |D s |
689 | 0 | 1 | |a Eigenfunktion |0 (DE-588)4151167-0 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Nichtlinearer Operator |0 (DE-588)4225824-8 |D s |
689 | 1 | 1 | |a Verzweigung |g Mathematik |0 (DE-588)4078889-1 |D s |
689 | 1 | |5 DE-604 | |
689 | 2 | 0 | |a Nichtlinearer Operator |0 (DE-588)4225824-8 |D s |
689 | 2 | 1 | |a Eigenfunktion |0 (DE-588)4151167-0 |D s |
689 | 2 | 2 | |a Verzweigung |g Mathematik |0 (DE-588)4078889-1 |D s |
689 | 2 | |5 DE-604 | |
830 | 0 | |a Lecture notes in mathematics |v 104 |w (DE-604)BV000676446 |9 104 | |
999 | |a oai:aleph.bib-bvb.de:BVB01-001858546 |
Datensatz im Suchindex
_version_ | 1804117259792154624 |
---|---|
any_adam_object | |
author | Pimbley, George Herbert |
author_facet | Pimbley, George Herbert |
author_role | aut |
author_sort | Pimbley, George Herbert |
author_variant | g h p gh ghp |
building | Verbundindex |
bvnumber | BV002968570 |
callnumber-first | Q - Science |
callnumber-label | QA3 |
callnumber-raw | QA3 |
callnumber-search | QA3 |
callnumber-sort | QA 13 |
callnumber-subject | QA - Mathematics |
classification_rvk | QH 150 SI 850 SK 640 |
ctrlnum | (OCoLC)603103313 (DE-599)BVBBV002968570 |
dewey-full | 517/.38 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 517 - [Unassigned] |
dewey-raw | 517/.38 |
dewey-search | 517/.38 |
dewey-sort | 3517 238 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik Wirtschaftswissenschaften |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01876nam a2200517 cb4500</leader><controlfield tag="001">BV002968570</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20080602 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">900725s1969 |||| 00||| eng d</controlfield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)603103313</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV002968570</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-91G</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-824</subfield><subfield code="a">DE-29T</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-83</subfield><subfield code="a">DE-11</subfield><subfield code="a">DE-188</subfield><subfield code="a">DE-210</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA3</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">517/.38</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">QH 150</subfield><subfield code="0">(DE-625)141534:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SI 850</subfield><subfield code="0">(DE-625)143199:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 640</subfield><subfield code="0">(DE-625)143250:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">47H15</subfield><subfield code="2">msc</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Pimbley, George Herbert</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Eigenfunction branches of nonlinear operators, and their bifurcations</subfield><subfield code="c">George H. Pimbley</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin [u.a.]</subfield><subfield code="b">Springer</subfield><subfield code="c">1969</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">128 S.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Lecture notes in mathematics</subfield><subfield code="v">104</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Opérateurs non linéaires</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nonlinear operators</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Verzweigung</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4078889-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Nichtlinearer Operator</subfield><subfield code="0">(DE-588)4225824-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Eigenfunktion</subfield><subfield code="0">(DE-588)4151167-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Nichtlinearer Operator</subfield><subfield code="0">(DE-588)4225824-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Eigenfunktion</subfield><subfield code="0">(DE-588)4151167-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Nichtlinearer Operator</subfield><subfield code="0">(DE-588)4225824-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Verzweigung</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4078889-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Nichtlinearer Operator</subfield><subfield code="0">(DE-588)4225824-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2="1"><subfield code="a">Eigenfunktion</subfield><subfield code="0">(DE-588)4151167-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2="2"><subfield code="a">Verzweigung</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4078889-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Lecture notes in mathematics</subfield><subfield code="v">104</subfield><subfield code="w">(DE-604)BV000676446</subfield><subfield code="9">104</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-001858546</subfield></datafield></record></collection> |
id | DE-604.BV002968570 |
illustrated | Not Illustrated |
indexdate | 2024-07-09T15:51:34Z |
institution | BVB |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-001858546 |
oclc_num | 603103313 |
open_access_boolean | |
owner | DE-384 DE-91G DE-BY-TUM DE-355 DE-BY-UBR DE-20 DE-824 DE-29T DE-703 DE-19 DE-BY-UBM DE-83 DE-11 DE-188 DE-210 |
owner_facet | DE-384 DE-91G DE-BY-TUM DE-355 DE-BY-UBR DE-20 DE-824 DE-29T DE-703 DE-19 DE-BY-UBM DE-83 DE-11 DE-188 DE-210 |
physical | 128 S. |
publishDate | 1969 |
publishDateSearch | 1969 |
publishDateSort | 1969 |
publisher | Springer |
record_format | marc |
series | Lecture notes in mathematics |
series2 | Lecture notes in mathematics |
spelling | Pimbley, George Herbert Verfasser aut Eigenfunction branches of nonlinear operators, and their bifurcations George H. Pimbley Berlin [u.a.] Springer 1969 128 S. txt rdacontent n rdamedia nc rdacarrier Lecture notes in mathematics 104 Opérateurs non linéaires Nonlinear operators Verzweigung Mathematik (DE-588)4078889-1 gnd rswk-swf Nichtlinearer Operator (DE-588)4225824-8 gnd rswk-swf Eigenfunktion (DE-588)4151167-0 gnd rswk-swf Nichtlinearer Operator (DE-588)4225824-8 s Eigenfunktion (DE-588)4151167-0 s DE-604 Verzweigung Mathematik (DE-588)4078889-1 s Lecture notes in mathematics 104 (DE-604)BV000676446 104 |
spellingShingle | Pimbley, George Herbert Eigenfunction branches of nonlinear operators, and their bifurcations Lecture notes in mathematics Opérateurs non linéaires Nonlinear operators Verzweigung Mathematik (DE-588)4078889-1 gnd Nichtlinearer Operator (DE-588)4225824-8 gnd Eigenfunktion (DE-588)4151167-0 gnd |
subject_GND | (DE-588)4078889-1 (DE-588)4225824-8 (DE-588)4151167-0 |
title | Eigenfunction branches of nonlinear operators, and their bifurcations |
title_auth | Eigenfunction branches of nonlinear operators, and their bifurcations |
title_exact_search | Eigenfunction branches of nonlinear operators, and their bifurcations |
title_full | Eigenfunction branches of nonlinear operators, and their bifurcations George H. Pimbley |
title_fullStr | Eigenfunction branches of nonlinear operators, and their bifurcations George H. Pimbley |
title_full_unstemmed | Eigenfunction branches of nonlinear operators, and their bifurcations George H. Pimbley |
title_short | Eigenfunction branches of nonlinear operators, and their bifurcations |
title_sort | eigenfunction branches of nonlinear operators and their bifurcations |
topic | Opérateurs non linéaires Nonlinear operators Verzweigung Mathematik (DE-588)4078889-1 gnd Nichtlinearer Operator (DE-588)4225824-8 gnd Eigenfunktion (DE-588)4151167-0 gnd |
topic_facet | Opérateurs non linéaires Nonlinear operators Verzweigung Mathematik Nichtlinearer Operator Eigenfunktion |
volume_link | (DE-604)BV000676446 |
work_keys_str_mv | AT pimbleygeorgeherbert eigenfunctionbranchesofnonlinearoperatorsandtheirbifurcations |