Harmonic analysis on reductive p-adic groups:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Berlin [u.a.]
Springer
1970
|
Schriftenreihe: | Lecture notes in mathematics
162 |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | IV, 125 S. |
ISBN: | 3540051899 0387051899 |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV002958887 | ||
003 | DE-604 | ||
005 | 20210304 | ||
007 | t | ||
008 | 900725s1970 |||| 00||| eng d | ||
020 | |a 3540051899 |9 3-540-05189-9 | ||
020 | |a 0387051899 |9 0-387-05189-9 | ||
035 | |a (OCoLC)843972671 | ||
035 | |a (DE-599)BVBBV002958887 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-91G |a DE-355 |a DE-20 |a DE-824 |a DE-29T |a DE-19 |a DE-706 |a DE-634 |a DE-11 |a DE-188 |a DE-210 | ||
050 | 0 | |a QA3 | |
082 | 0 | |a 512/.22 | |
084 | |a SI 850 |0 (DE-625)143199: |2 rvk | ||
084 | |a SK 240 |0 (DE-625)143226: |2 rvk | ||
100 | 0 | |a Harish-Chandra |d 1923-1983 |e Verfasser |0 (DE-588)119089130 |4 aut | |
245 | 1 | 0 | |a Harmonic analysis on reductive p-adic groups |c Harish-Chandra. Notes by G. van Dijk |
264 | 1 | |a Berlin [u.a.] |b Springer |c 1970 | |
300 | |a IV, 125 S. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Lecture notes in mathematics |v 162 | |
650 | 4 | |a Groupes finis | |
650 | 4 | |a Harmonique, Analyse | |
650 | 4 | |a Harmonic analysis | |
650 | 4 | |a p-adic groups | |
650 | 0 | 7 | |a Reduktive Gruppe |0 (DE-588)4177313-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Harmonische Analyse |0 (DE-588)4023453-8 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Harmonische Analyse |0 (DE-588)4023453-8 |D s |
689 | 0 | 1 | |a Reduktive Gruppe |0 (DE-588)4177313-5 |D s |
689 | 0 | |5 DE-604 | |
830 | 0 | |a Lecture notes in mathematics |v 162 |w (DE-604)BV000676446 |9 162 | |
856 | 4 | 2 | |m HBZ Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=001852438&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
940 | 1 | |q HUB-ZB011200908 | |
999 | |a oai:aleph.bib-bvb.de:BVB01-001852438 |
Datensatz im Suchindex
_version_ | 1804117250332950528 |
---|---|
adam_text | CONTENTS
Part I. Existence of characters for the discrete series.
§1. Square integrable representations mod Z. 4
§2. Reductive yx adic groups. 8
§3. Supercuspidal representations. 9
§4. A conjecture. 10
Part II. Existence of characters in the general case.
§1. The Godement principle. 12
§2. A theorem of Bruhat and Tits. 15
§3. Proof of Theorem 4 (based on Conjecture I). 16
Part III. Supercusp forms and supercuspidal representations.
§1. The space generated by a supercusp form. 20
§2. Some consequences. 26
Part IV. The space JL(G, t).
§1. Conjecture III. 30
§2. The space A(G, t). 31
§3. Proof of Theorem 7. 38
§4. Proof of Theorem 8. 39
Part V. The behavior of the characters of the supercuspidal representations
on the regular set.
§1. Two fundamental theorems. 43
§2. p, Adic manifolds and distributions. 48
§3. Invariant distributions on the regular set. 51
§4. Applications to the characters of the supercuspidal
representations. 57
Part VI. The mapping F (char n = 0).
§1. Introduction and elementary properties of the mapping « . 63
§2. The first step in the proof of Theorem 13. 68
§3. Some algebraic lemmas on nilpotent elements. 71
§4. A submersive map. 72
§5. Some more preparation. 76
§6. The second step in the proof of Theorem 13. 78
§7. Completion of the proof of Theorem 13. 81
§8. Lifting of Theorem 13 to the group. 82
IV
1
~2~e
Part VII. The local summability of |D | (char n = 0).
§1. Statement of Theorem 15. Reduction to the Lie algebra. 86
§2. Proof of the main lemma. 90
Part VIII. The local summability of the characters of the supercuspidal
representations (char 0=0),
§1. The main theorem and its consequences. 92
§2. Statement of the preparatory results for the proof of
Theorem 16. 95
§3, Proof of the main theorem. 98
§4. Proof of Lemma 46. 103
§5. Proof of Theorem 18 (first step), 106
§6. Proof of Theorem 19, 108
§7. Proof of Theorem 18 (second step). 114
§8. Proof of Theorem 20. 116
|
any_adam_object | 1 |
author | Harish-Chandra 1923-1983 |
author_GND | (DE-588)119089130 |
author_facet | Harish-Chandra 1923-1983 |
author_role | aut |
author_sort | Harish-Chandra 1923-1983 |
author_variant | h c hc |
building | Verbundindex |
bvnumber | BV002958887 |
callnumber-first | Q - Science |
callnumber-label | QA3 |
callnumber-raw | QA3 |
callnumber-search | QA3 |
callnumber-sort | QA 13 |
callnumber-subject | QA - Mathematics |
classification_rvk | SI 850 SK 240 |
ctrlnum | (OCoLC)843972671 (DE-599)BVBBV002958887 |
dewey-full | 512/.22 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 512 - Algebra |
dewey-raw | 512/.22 |
dewey-search | 512/.22 |
dewey-sort | 3512 222 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01818nam a2200469 cb4500</leader><controlfield tag="001">BV002958887</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20210304 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">900725s1970 |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3540051899</subfield><subfield code="9">3-540-05189-9</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0387051899</subfield><subfield code="9">0-387-05189-9</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)843972671</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV002958887</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-91G</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-824</subfield><subfield code="a">DE-29T</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-706</subfield><subfield code="a">DE-634</subfield><subfield code="a">DE-11</subfield><subfield code="a">DE-188</subfield><subfield code="a">DE-210</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA3</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">512/.22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SI 850</subfield><subfield code="0">(DE-625)143199:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 240</subfield><subfield code="0">(DE-625)143226:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Harish-Chandra</subfield><subfield code="d">1923-1983</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)119089130</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Harmonic analysis on reductive p-adic groups</subfield><subfield code="c">Harish-Chandra. Notes by G. van Dijk</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin [u.a.]</subfield><subfield code="b">Springer</subfield><subfield code="c">1970</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">IV, 125 S.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Lecture notes in mathematics</subfield><subfield code="v">162</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Groupes finis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Harmonique, Analyse</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Harmonic analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">p-adic groups</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Reduktive Gruppe</subfield><subfield code="0">(DE-588)4177313-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Harmonische Analyse</subfield><subfield code="0">(DE-588)4023453-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Harmonische Analyse</subfield><subfield code="0">(DE-588)4023453-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Reduktive Gruppe</subfield><subfield code="0">(DE-588)4177313-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Lecture notes in mathematics</subfield><subfield code="v">162</subfield><subfield code="w">(DE-604)BV000676446</subfield><subfield code="9">162</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HBZ Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=001852438&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">HUB-ZB011200908</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-001852438</subfield></datafield></record></collection> |
id | DE-604.BV002958887 |
illustrated | Not Illustrated |
indexdate | 2024-07-09T15:51:25Z |
institution | BVB |
isbn | 3540051899 0387051899 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-001852438 |
oclc_num | 843972671 |
open_access_boolean | |
owner | DE-384 DE-91G DE-BY-TUM DE-355 DE-BY-UBR DE-20 DE-824 DE-29T DE-19 DE-BY-UBM DE-706 DE-634 DE-11 DE-188 DE-210 |
owner_facet | DE-384 DE-91G DE-BY-TUM DE-355 DE-BY-UBR DE-20 DE-824 DE-29T DE-19 DE-BY-UBM DE-706 DE-634 DE-11 DE-188 DE-210 |
physical | IV, 125 S. |
psigel | HUB-ZB011200908 |
publishDate | 1970 |
publishDateSearch | 1970 |
publishDateSort | 1970 |
publisher | Springer |
record_format | marc |
series | Lecture notes in mathematics |
series2 | Lecture notes in mathematics |
spelling | Harish-Chandra 1923-1983 Verfasser (DE-588)119089130 aut Harmonic analysis on reductive p-adic groups Harish-Chandra. Notes by G. van Dijk Berlin [u.a.] Springer 1970 IV, 125 S. txt rdacontent n rdamedia nc rdacarrier Lecture notes in mathematics 162 Groupes finis Harmonique, Analyse Harmonic analysis p-adic groups Reduktive Gruppe (DE-588)4177313-5 gnd rswk-swf Harmonische Analyse (DE-588)4023453-8 gnd rswk-swf Harmonische Analyse (DE-588)4023453-8 s Reduktive Gruppe (DE-588)4177313-5 s DE-604 Lecture notes in mathematics 162 (DE-604)BV000676446 162 HBZ Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=001852438&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Harish-Chandra 1923-1983 Harmonic analysis on reductive p-adic groups Lecture notes in mathematics Groupes finis Harmonique, Analyse Harmonic analysis p-adic groups Reduktive Gruppe (DE-588)4177313-5 gnd Harmonische Analyse (DE-588)4023453-8 gnd |
subject_GND | (DE-588)4177313-5 (DE-588)4023453-8 |
title | Harmonic analysis on reductive p-adic groups |
title_auth | Harmonic analysis on reductive p-adic groups |
title_exact_search | Harmonic analysis on reductive p-adic groups |
title_full | Harmonic analysis on reductive p-adic groups Harish-Chandra. Notes by G. van Dijk |
title_fullStr | Harmonic analysis on reductive p-adic groups Harish-Chandra. Notes by G. van Dijk |
title_full_unstemmed | Harmonic analysis on reductive p-adic groups Harish-Chandra. Notes by G. van Dijk |
title_short | Harmonic analysis on reductive p-adic groups |
title_sort | harmonic analysis on reductive p adic groups |
topic | Groupes finis Harmonique, Analyse Harmonic analysis p-adic groups Reduktive Gruppe (DE-588)4177313-5 gnd Harmonische Analyse (DE-588)4023453-8 gnd |
topic_facet | Groupes finis Harmonique, Analyse Harmonic analysis p-adic groups Reduktive Gruppe Harmonische Analyse |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=001852438&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
volume_link | (DE-604)BV000676446 |
work_keys_str_mv | AT harishchandra harmonicanalysisonreductivepadicgroups |