Homological algebra:
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
London
Cumberlege [u.a.]1973
1973
|
Ausgabe: | 7. print. |
Schriftenreihe: | Princeton mathematical series
19 |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | XV, 390 S. |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV002624993 | ||
003 | DE-604 | ||
005 | 20130805 | ||
007 | t | ||
008 | 900403s1973 |||| 00||| eng d | ||
035 | |a (OCoLC)256072542 | ||
035 | |a (DE-599)BVBBV002624993 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
049 | |a DE-703 |a DE-739 |a DE-355 |a DE-824 |a DE-19 |a DE-29T |a DE-11 |a DE-188 |a DE-706 | ||
084 | |a SK 320 |0 (DE-625)143231: |2 rvk | ||
100 | 1 | |a Cartan, Henri |d 1904-2008 |e Verfasser |0 (DE-588)118668625 |4 aut | |
245 | 1 | 0 | |a Homological algebra |c by Henri Cartan and Samuel Eilenberg |
250 | |a 7. print. | ||
264 | 1 | |a London |b Cumberlege [u.a.]1973 |c 1973 | |
300 | |a XV, 390 S. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Princeton mathematical series |v 19 | |
650 | 0 | 7 | |a Homologische Algebra |0 (DE-588)4160598-6 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Homologische Algebra |0 (DE-588)4160598-6 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Eilenberg, Samuel |d 1913-1998 |e Verfasser |0 (DE-588)119020769 |4 aut | |
830 | 0 | |a Princeton mathematical series |v 19 |w (DE-604)BV000019035 |9 19 | |
856 | 4 | 2 | |m HBZ Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=001686881&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-001686881 |
Datensatz im Suchindex
_version_ | 1804117009113284608 |
---|---|
adam_text | Contents
Preface v
Chapter I. Rings and Modules 3
1. Preliminaries 3
2. Projective modules 6
3. Injective modules 8
4. Semi-simple rings 11
5. Hereditary rings 12
6. Semi-hereditary rings 14
7. Noetherian rings 15
Exercises 16
Chapter IF. Additive Functors 18
1. Definitions 18
2. Examples 20
3. Operators 22
4. Preservation of exactness 23
5. Composite functors 27
6. Change of rings 28
Exercises 31
Chapter III. Satellites 33
1. Definition of satellites 33
2. Connecting homomorphisms 37
3. Half exact functors 39
4. Connected sequence of functors 43
5. Axiomatic description of satellites 45
6. Composite functors 48
7. Several variables 49
Exercises 51
Chapter IV. Homology 53
1. Modules with differentiation 53
2. The ring of dual numbers 56
3. Graded modules, complexes 58
xi
xii CONTENTS
4. Double gradings and complexes 60
5. Functors of complexes 62
6. The homomorphism a 64
7. The homomorphism a (continuation) 66
8. Kiinneth relations 71
Exercises 72
Chapter V. Derived Functors 75
1. Complexes over modules; resolutions 75
2. Resolutions of sequences 78
3. Definition of derived functors 82
4. Connecting homomorphisms 84
5. The functors R°T and L0T 89
6. Comparison with satellites 90
7. Computational devices 91
8. Partial derived functors 94
9. Sums, products, limits 97
10. The sequence of a map 101
Exercises 104
Chapter VI. Derived Functors of ® and Horn 106
1. The functors Tor and Ext 106
2. Dimension of modules and rings 109
3. Kiinneth relations 112
4. Change of rings 116
5. Duality homomorphisms 119
Exercises 122
Chapter VII. Integral Domains 127
1. Generalities 127
2. The field of quotients 129
3. Inversible ideals 132
4. Priifer rings 133
5. Dedekind rings 134
6. Abelian groups 135
7. A description of Torj (A,C) 137
Exercises 139
Chapter VIII. Augmented Rings 143
1. Homology and cohomology of an augmented ring 143
2. Examples 146
3. Change of rings 149
CONTENTS xiii
4. Dimension 150
5. Faithful systems 154
6. Applications to graded and local rings 156
Exercises 158
Chapter IX. Associative Algebras 162
1. Algebras and their tensor products 162
2. Associativity formulae 165
3. The enveloping algebra A 167
4. Homology and cohomology of algebras 169
5. The Hochschild groups as functors of A 171
6. Standard complexes 174
7. Dimension 176
Exercises 180
Chapter X. Supplemented Algebras 182
1. Homology of supplemented algebras 182
2. Comparison with Hochschild groups 185
3. Augmented monoids 187
4. Groups 189
5. Examples of resolutions 192
6. The inverse process 193
7. Subalgebras and subgroups 196
8. Weakly injective and projective modules 197
Exercises 201
Chapter XI. Products 202
1. External products 202
2. Formal properties of the products 206
3. Isomorphisms 209
4. Internal products 211
5. Computation of products 213
6. Products in the Hochschild theory 216
7. Products for supplemented algebras 219
8. Associativity formulae 222
9. Reduction theorems 225
Exercises 228
Chapter XII. Finite Groups 232
1. Norms 232
2. The complete derived sequence 235
3. Complete resolutions 237
xiv CONTENTS
4. Products for finite groups 242
5. The uniqueness theorem 244
6. Duality 247
7. Examples 250
8. Relations with subgroups 254
9. Double cosets 256
10. / -groups and Sylow groups 258
11. Periodicity 260
Exercises 263
Chapter XIII. Lie Algebras 266
1. Lie algebras and their enveloping algebras 266
2. Homology and cohomology of Lie algebras 270
3. The Poincare-Witt theorem 271
4. Subalgebras and ideals 274
5. The diagonal map and its applications 275
6. A relation in the standard complex 277
7. The complex V(q) 279
8. Applications of the complex V(efi 282
Exercises 284
Chapter XIV. Extensions 289
1. Extensions of modules 289
2. Extensions of associative algebras 293
3. Extensions of supplemented algebras 295
4. Extensions of groups 299
5. Extensions of Lie algebras 304
Exercises 308
Chapter XV. Spectral Sequences 315
1. Filtrations and spectral sequences 315
2. Convergence 319
3. Maps and homotopies 321
4. The graded case 323
5. Induced homomorphisms and exact sequences 325
6. Application to double complexes 330
7. A generalization 333
Exercises 336
Chapter XVI. Applications of Spectral Sequences 340
1. Partial derived functors 340
2. Functors of complexes 342
CONTENTS xv
3. Composite functors 343
4. Associativity formulae 345
5. Applications to the change of rings 347
6. Normal subalgebras 349
7. Associativity formulae using diagonal maps 351
8. Complexes over algebras 352
9. Topological applications 355
10. The almost zero theory 358
Exercises 360
Chapter XVII. Hyperhomology 362
1. Resolutions of complexes 362
2. The invariants 366
3. Regularity conditions 368
4. Mapping theorems 371
5. Kunneth relations 372
6. Balanced functors 374
7. Composite functors 376
Appendix: Exact categories, by David A. Buchsbaum 379
List of Symbols 387
Index of Terminology 389
|
any_adam_object | 1 |
author | Cartan, Henri 1904-2008 Eilenberg, Samuel 1913-1998 |
author_GND | (DE-588)118668625 (DE-588)119020769 |
author_facet | Cartan, Henri 1904-2008 Eilenberg, Samuel 1913-1998 |
author_role | aut aut |
author_sort | Cartan, Henri 1904-2008 |
author_variant | h c hc s e se |
building | Verbundindex |
bvnumber | BV002624993 |
classification_rvk | SK 320 |
ctrlnum | (OCoLC)256072542 (DE-599)BVBBV002624993 |
discipline | Mathematik |
edition | 7. print. |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01425nam a2200349 cb4500</leader><controlfield tag="001">BV002624993</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20130805 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">900403s1973 |||| 00||| eng d</controlfield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)256072542</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV002624993</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-703</subfield><subfield code="a">DE-739</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-824</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-29T</subfield><subfield code="a">DE-11</subfield><subfield code="a">DE-188</subfield><subfield code="a">DE-706</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 320</subfield><subfield code="0">(DE-625)143231:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Cartan, Henri</subfield><subfield code="d">1904-2008</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)118668625</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Homological algebra</subfield><subfield code="c">by Henri Cartan and Samuel Eilenberg</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">7. print.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">London</subfield><subfield code="b">Cumberlege [u.a.]1973</subfield><subfield code="c">1973</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XV, 390 S.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Princeton mathematical series</subfield><subfield code="v">19</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Homologische Algebra</subfield><subfield code="0">(DE-588)4160598-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Homologische Algebra</subfield><subfield code="0">(DE-588)4160598-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Eilenberg, Samuel</subfield><subfield code="d">1913-1998</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)119020769</subfield><subfield code="4">aut</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Princeton mathematical series</subfield><subfield code="v">19</subfield><subfield code="w">(DE-604)BV000019035</subfield><subfield code="9">19</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HBZ Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=001686881&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-001686881</subfield></datafield></record></collection> |
id | DE-604.BV002624993 |
illustrated | Not Illustrated |
indexdate | 2024-07-09T15:47:35Z |
institution | BVB |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-001686881 |
oclc_num | 256072542 |
open_access_boolean | |
owner | DE-703 DE-739 DE-355 DE-BY-UBR DE-824 DE-19 DE-BY-UBM DE-29T DE-11 DE-188 DE-706 |
owner_facet | DE-703 DE-739 DE-355 DE-BY-UBR DE-824 DE-19 DE-BY-UBM DE-29T DE-11 DE-188 DE-706 |
physical | XV, 390 S. |
publishDate | 1973 |
publishDateSearch | 1973 |
publishDateSort | 1973 |
publisher | Cumberlege [u.a.]1973 |
record_format | marc |
series | Princeton mathematical series |
series2 | Princeton mathematical series |
spelling | Cartan, Henri 1904-2008 Verfasser (DE-588)118668625 aut Homological algebra by Henri Cartan and Samuel Eilenberg 7. print. London Cumberlege [u.a.]1973 1973 XV, 390 S. txt rdacontent n rdamedia nc rdacarrier Princeton mathematical series 19 Homologische Algebra (DE-588)4160598-6 gnd rswk-swf Homologische Algebra (DE-588)4160598-6 s DE-604 Eilenberg, Samuel 1913-1998 Verfasser (DE-588)119020769 aut Princeton mathematical series 19 (DE-604)BV000019035 19 HBZ Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=001686881&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Cartan, Henri 1904-2008 Eilenberg, Samuel 1913-1998 Homological algebra Princeton mathematical series Homologische Algebra (DE-588)4160598-6 gnd |
subject_GND | (DE-588)4160598-6 |
title | Homological algebra |
title_auth | Homological algebra |
title_exact_search | Homological algebra |
title_full | Homological algebra by Henri Cartan and Samuel Eilenberg |
title_fullStr | Homological algebra by Henri Cartan and Samuel Eilenberg |
title_full_unstemmed | Homological algebra by Henri Cartan and Samuel Eilenberg |
title_short | Homological algebra |
title_sort | homological algebra |
topic | Homologische Algebra (DE-588)4160598-6 gnd |
topic_facet | Homologische Algebra |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=001686881&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
volume_link | (DE-604)BV000019035 |
work_keys_str_mv | AT cartanhenri homologicalalgebra AT eilenbergsamuel homologicalalgebra |