Critical points at infinity in some variational problems:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Harlow, Essex
Longman Scientific & Technical
1989
|
Ausgabe: | 1. publ. |
Schriftenreihe: | Pitman research notes in mathematics series
182 |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | 15, 307 S. |
ISBN: | 0582021642 0470211474 |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV002475726 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | t | ||
008 | 900208s1989 |||| 00||| engod | ||
020 | |a 0582021642 |9 0-582-02164-2 | ||
020 | |a 0470211474 |9 0-470-21147-4 | ||
035 | |a (OCoLC)17841431 | ||
035 | |a (DE-599)BVBBV002475726 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-384 |a DE-739 |a DE-355 |a DE-29T |a DE-706 |a DE-634 |a DE-83 |a DE-11 |a DE-188 | ||
050 | 0 | |a QA316 | |
082 | 0 | |a 515/.64 |2 19 | |
084 | |a SI 880 |0 (DE-625)143209: |2 rvk | ||
084 | |a SK 660 |0 (DE-625)143251: |2 rvk | ||
084 | |a 58E05 |2 msc | ||
100 | 1 | |a Bahri, A. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Critical points at infinity in some variational problems |
250 | |a 1. publ. | ||
264 | 1 | |a Harlow, Essex |b Longman Scientific & Technical |c 1989 | |
300 | |a 15, 307 S. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Pitman research notes in mathematics series |v 182 | |
650 | 4 | |a Calcul des variations | |
650 | 7 | |a Calcul des variations |2 ram | |
650 | 7 | |a Point critique |2 Jussieu | |
650 | 4 | |a Points critiques, Théorie des (Analyse mathématique) | |
650 | 7 | |a Problème variationnel |2 Jussieu | |
650 | 4 | |a Équations aux dérivées partielles | |
650 | 4 | |a Calculus of variations | |
650 | 4 | |a Critical point theory (Mathematical analysis) | |
650 | 4 | |a Differential equations, Partial | |
650 | 0 | 7 | |a Variationsrechnung |0 (DE-588)4062355-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Kritischer Punkt |0 (DE-588)4140476-2 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Variationsrechnung |0 (DE-588)4062355-5 |D s |
689 | 0 | 1 | |a Kritischer Punkt |0 (DE-588)4140476-2 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Variationsrechnung |0 (DE-588)4062355-5 |D s |
689 | 1 | |5 DE-604 | |
830 | 0 | |a Pitman research notes in mathematics series |v 182 |w (DE-604)BV000022845 |9 182 | |
856 | 4 | 2 | |m HBZ Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=001597970&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-001597970 |
Datensatz im Suchindex
_version_ | 1804116886798991360 |
---|---|
adam_text | Contents
Introduction
Part 1 The flow 1
1 Technical lemmas 3
2 First estimates relevant to the theory 14
2.1 Gradient type estimates 14
2.2 Interaction estimates 15
3 The v part of u 63
3.1 The second derivative and v 63
3.2 The interaction with the v; Estimates 73
3. 3 The flow; a first normal form 101
3.4 64/n 2v2dx 104
i
3.5 Differentiation along a gradient line 119
4 The normal form of the dynamical system near infinity 130
4.1 The implicit form 130
4.2 The matricial form : inversion of the matrices 136
4. 3 Farther estimates on the v part of u 155
Part 2 The variational problem near infinity 171
5 Morse lemma near infinity 173
5. 1 A first expansion of J near infinity 173
5.2 The situation when K is constant, Q TR along 199
compact sets
5. 3 A local type deformation argument: the case K = 1 214
6 Topological arguments (existence proof) 217
6.1 The rational homology case 217
6.2 The general case: some facts in algebraic topology 226
6. 3 The existence argument in the general case 235
7 The Palais Smale condition on flow lines 287
Appendix 303
References 306
|
any_adam_object | 1 |
author | Bahri, A. |
author_facet | Bahri, A. |
author_role | aut |
author_sort | Bahri, A. |
author_variant | a b ab |
building | Verbundindex |
bvnumber | BV002475726 |
callnumber-first | Q - Science |
callnumber-label | QA316 |
callnumber-raw | QA316 |
callnumber-search | QA316 |
callnumber-sort | QA 3316 |
callnumber-subject | QA - Mathematics |
classification_rvk | SI 880 SK 660 |
ctrlnum | (OCoLC)17841431 (DE-599)BVBBV002475726 |
dewey-full | 515/.64 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515/.64 |
dewey-search | 515/.64 |
dewey-sort | 3515 264 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
edition | 1. publ. |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02208nam a2200565 cb4500</leader><controlfield tag="001">BV002475726</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">900208s1989 |||| 00||| engod</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0582021642</subfield><subfield code="9">0-582-02164-2</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0470211474</subfield><subfield code="9">0-470-21147-4</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)17841431</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV002475726</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-384</subfield><subfield code="a">DE-739</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-29T</subfield><subfield code="a">DE-706</subfield><subfield code="a">DE-634</subfield><subfield code="a">DE-83</subfield><subfield code="a">DE-11</subfield><subfield code="a">DE-188</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA316</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515/.64</subfield><subfield code="2">19</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SI 880</subfield><subfield code="0">(DE-625)143209:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 660</subfield><subfield code="0">(DE-625)143251:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">58E05</subfield><subfield code="2">msc</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Bahri, A.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Critical points at infinity in some variational problems</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">1. publ.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Harlow, Essex</subfield><subfield code="b">Longman Scientific & Technical</subfield><subfield code="c">1989</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">15, 307 S.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Pitman research notes in mathematics series</subfield><subfield code="v">182</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Calcul des variations</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Calcul des variations</subfield><subfield code="2">ram</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Point critique</subfield><subfield code="2">Jussieu</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Points critiques, Théorie des (Analyse mathématique)</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Problème variationnel</subfield><subfield code="2">Jussieu</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Équations aux dérivées partielles</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Calculus of variations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Critical point theory (Mathematical analysis)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differential equations, Partial</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Variationsrechnung</subfield><subfield code="0">(DE-588)4062355-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Kritischer Punkt</subfield><subfield code="0">(DE-588)4140476-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Variationsrechnung</subfield><subfield code="0">(DE-588)4062355-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Kritischer Punkt</subfield><subfield code="0">(DE-588)4140476-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Variationsrechnung</subfield><subfield code="0">(DE-588)4062355-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Pitman research notes in mathematics series</subfield><subfield code="v">182</subfield><subfield code="w">(DE-604)BV000022845</subfield><subfield code="9">182</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HBZ Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=001597970&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-001597970</subfield></datafield></record></collection> |
id | DE-604.BV002475726 |
illustrated | Not Illustrated |
indexdate | 2024-07-09T15:45:38Z |
institution | BVB |
isbn | 0582021642 0470211474 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-001597970 |
oclc_num | 17841431 |
open_access_boolean | |
owner | DE-12 DE-384 DE-739 DE-355 DE-BY-UBR DE-29T DE-706 DE-634 DE-83 DE-11 DE-188 |
owner_facet | DE-12 DE-384 DE-739 DE-355 DE-BY-UBR DE-29T DE-706 DE-634 DE-83 DE-11 DE-188 |
physical | 15, 307 S. |
publishDate | 1989 |
publishDateSearch | 1989 |
publishDateSort | 1989 |
publisher | Longman Scientific & Technical |
record_format | marc |
series | Pitman research notes in mathematics series |
series2 | Pitman research notes in mathematics series |
spelling | Bahri, A. Verfasser aut Critical points at infinity in some variational problems 1. publ. Harlow, Essex Longman Scientific & Technical 1989 15, 307 S. txt rdacontent n rdamedia nc rdacarrier Pitman research notes in mathematics series 182 Calcul des variations Calcul des variations ram Point critique Jussieu Points critiques, Théorie des (Analyse mathématique) Problème variationnel Jussieu Équations aux dérivées partielles Calculus of variations Critical point theory (Mathematical analysis) Differential equations, Partial Variationsrechnung (DE-588)4062355-5 gnd rswk-swf Kritischer Punkt (DE-588)4140476-2 gnd rswk-swf Variationsrechnung (DE-588)4062355-5 s Kritischer Punkt (DE-588)4140476-2 s DE-604 Pitman research notes in mathematics series 182 (DE-604)BV000022845 182 HBZ Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=001597970&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Bahri, A. Critical points at infinity in some variational problems Pitman research notes in mathematics series Calcul des variations Calcul des variations ram Point critique Jussieu Points critiques, Théorie des (Analyse mathématique) Problème variationnel Jussieu Équations aux dérivées partielles Calculus of variations Critical point theory (Mathematical analysis) Differential equations, Partial Variationsrechnung (DE-588)4062355-5 gnd Kritischer Punkt (DE-588)4140476-2 gnd |
subject_GND | (DE-588)4062355-5 (DE-588)4140476-2 |
title | Critical points at infinity in some variational problems |
title_auth | Critical points at infinity in some variational problems |
title_exact_search | Critical points at infinity in some variational problems |
title_full | Critical points at infinity in some variational problems |
title_fullStr | Critical points at infinity in some variational problems |
title_full_unstemmed | Critical points at infinity in some variational problems |
title_short | Critical points at infinity in some variational problems |
title_sort | critical points at infinity in some variational problems |
topic | Calcul des variations Calcul des variations ram Point critique Jussieu Points critiques, Théorie des (Analyse mathématique) Problème variationnel Jussieu Équations aux dérivées partielles Calculus of variations Critical point theory (Mathematical analysis) Differential equations, Partial Variationsrechnung (DE-588)4062355-5 gnd Kritischer Punkt (DE-588)4140476-2 gnd |
topic_facet | Calcul des variations Point critique Points critiques, Théorie des (Analyse mathématique) Problème variationnel Équations aux dérivées partielles Calculus of variations Critical point theory (Mathematical analysis) Differential equations, Partial Variationsrechnung Kritischer Punkt |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=001597970&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
volume_link | (DE-604)BV000022845 |
work_keys_str_mv | AT bahria criticalpointsatinfinityinsomevariationalproblems |