Representations of real reductive Lie Groups:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Boston
Birkhäuser
1981
|
Schriftenreihe: | Progress in mathematics.
15. |
Schlagworte: | |
Beschreibung: | XVII, 754 S. |
ISBN: | 3764330376 |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV002268007 | ||
003 | DE-604 | ||
005 | 19990121 | ||
007 | t | ||
008 | 890928s1981 |||| 00||| eng d | ||
020 | |a 3764330376 |9 3-7643-3037-6 | ||
035 | |a (OCoLC)7578076 | ||
035 | |a (DE-599)BVBBV002268007 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-91G |a DE-384 |a DE-703 |a DE-739 |a DE-355 |a DE-824 |a DE-29T |a DE-19 |a DE-706 |a DE-634 |a DE-83 |a DE-188 |a DE-11 | ||
050 | 0 | |a QA387 | |
082 | 0 | |a 512/.55 |2 19 | |
084 | |a SK 260 |0 (DE-625)143227: |2 rvk | ||
084 | |a SK 340 |0 (DE-625)143232: |2 rvk | ||
084 | |a 22E47 |2 msc | ||
100 | 1 | |a Vogan, David A. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Representations of real reductive Lie Groups |c David A. Vogan |
264 | 1 | |a Boston |b Birkhäuser |c 1981 | |
300 | |a XVII, 754 S. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Progress in mathematics. |v 15. | |
650 | 4 | |a Lie, Groupes de | |
650 | 4 | |a Représentations de groupes | |
650 | 4 | |a Lie groups | |
650 | 4 | |a Representations of Lie groups | |
650 | 0 | 7 | |a Darstellungstheorie |0 (DE-588)4148816-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Darstellung |0 (DE-588)4200624-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Lie-Gruppe |0 (DE-588)4035695-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Darstellung |g Mathematik |0 (DE-588)4128289-9 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Lie-Gruppe |0 (DE-588)4035695-4 |D s |
689 | 0 | 1 | |a Darstellung |0 (DE-588)4200624-7 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Lie-Gruppe |0 (DE-588)4035695-4 |D s |
689 | 1 | 1 | |a Darstellungstheorie |0 (DE-588)4148816-7 |D s |
689 | 1 | |5 DE-604 | |
689 | 2 | 0 | |a Darstellung |g Mathematik |0 (DE-588)4128289-9 |D s |
689 | 2 | 1 | |a Lie-Gruppe |0 (DE-588)4035695-4 |D s |
689 | 2 | |5 DE-604 | |
830 | 0 | |a Progress in mathematics. |v 15. |w (DE-604)BV000004120 |9 15. | |
940 | 1 | |q TUB-nveb | |
999 | |a oai:aleph.bib-bvb.de:BVB01-001490274 | ||
980 | 4 | |a (DE-12)AK23130590 |
Datensatz im Suchindex
_version_ | 1804116725695774720 |
---|---|
any_adam_object | |
author | Vogan, David A. |
author_facet | Vogan, David A. |
author_role | aut |
author_sort | Vogan, David A. |
author_variant | d a v da dav |
building | Verbundindex |
bvnumber | BV002268007 |
callnumber-first | Q - Science |
callnumber-label | QA387 |
callnumber-raw | QA387 |
callnumber-search | QA387 |
callnumber-sort | QA 3387 |
callnumber-subject | QA - Mathematics |
classification_rvk | SK 260 SK 340 |
ctrlnum | (OCoLC)7578076 (DE-599)BVBBV002268007 |
dewey-full | 512/.55 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 512 - Algebra |
dewey-raw | 512/.55 |
dewey-search | 512/.55 |
dewey-sort | 3512 255 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01942nam a2200565 cb4500</leader><controlfield tag="001">BV002268007</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">19990121 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">890928s1981 |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3764330376</subfield><subfield code="9">3-7643-3037-6</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)7578076</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV002268007</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-91G</subfield><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-739</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-824</subfield><subfield code="a">DE-29T</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-706</subfield><subfield code="a">DE-634</subfield><subfield code="a">DE-83</subfield><subfield code="a">DE-188</subfield><subfield code="a">DE-11</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA387</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">512/.55</subfield><subfield code="2">19</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 260</subfield><subfield code="0">(DE-625)143227:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 340</subfield><subfield code="0">(DE-625)143232:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">22E47</subfield><subfield code="2">msc</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Vogan, David A.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Representations of real reductive Lie Groups</subfield><subfield code="c">David A. Vogan</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Boston</subfield><subfield code="b">Birkhäuser</subfield><subfield code="c">1981</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XVII, 754 S.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Progress in mathematics.</subfield><subfield code="v">15.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Lie, Groupes de</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Représentations de groupes</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Lie groups</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Representations of Lie groups</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Darstellungstheorie</subfield><subfield code="0">(DE-588)4148816-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Darstellung</subfield><subfield code="0">(DE-588)4200624-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Lie-Gruppe</subfield><subfield code="0">(DE-588)4035695-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Darstellung</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4128289-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Lie-Gruppe</subfield><subfield code="0">(DE-588)4035695-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Darstellung</subfield><subfield code="0">(DE-588)4200624-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Lie-Gruppe</subfield><subfield code="0">(DE-588)4035695-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Darstellungstheorie</subfield><subfield code="0">(DE-588)4148816-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Darstellung</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4128289-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2="1"><subfield code="a">Lie-Gruppe</subfield><subfield code="0">(DE-588)4035695-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Progress in mathematics.</subfield><subfield code="v">15.</subfield><subfield code="w">(DE-604)BV000004120</subfield><subfield code="9">15.</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">TUB-nveb</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-001490274</subfield></datafield><datafield tag="980" ind1="4" ind2=" "><subfield code="a">(DE-12)AK23130590</subfield></datafield></record></collection> |
id | DE-604.BV002268007 |
illustrated | Not Illustrated |
indexdate | 2024-07-09T15:43:05Z |
institution | BVB |
isbn | 3764330376 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-001490274 |
oclc_num | 7578076 |
open_access_boolean | |
owner | DE-12 DE-91G DE-BY-TUM DE-384 DE-703 DE-739 DE-355 DE-BY-UBR DE-824 DE-29T DE-19 DE-BY-UBM DE-706 DE-634 DE-83 DE-188 DE-11 |
owner_facet | DE-12 DE-91G DE-BY-TUM DE-384 DE-703 DE-739 DE-355 DE-BY-UBR DE-824 DE-29T DE-19 DE-BY-UBM DE-706 DE-634 DE-83 DE-188 DE-11 |
physical | XVII, 754 S. |
psigel | TUB-nveb |
publishDate | 1981 |
publishDateSearch | 1981 |
publishDateSort | 1981 |
publisher | Birkhäuser |
record_format | marc |
series | Progress in mathematics. |
series2 | Progress in mathematics. |
spelling | Vogan, David A. Verfasser aut Representations of real reductive Lie Groups David A. Vogan Boston Birkhäuser 1981 XVII, 754 S. txt rdacontent n rdamedia nc rdacarrier Progress in mathematics. 15. Lie, Groupes de Représentations de groupes Lie groups Representations of Lie groups Darstellungstheorie (DE-588)4148816-7 gnd rswk-swf Darstellung (DE-588)4200624-7 gnd rswk-swf Lie-Gruppe (DE-588)4035695-4 gnd rswk-swf Darstellung Mathematik (DE-588)4128289-9 gnd rswk-swf Lie-Gruppe (DE-588)4035695-4 s Darstellung (DE-588)4200624-7 s DE-604 Darstellungstheorie (DE-588)4148816-7 s Darstellung Mathematik (DE-588)4128289-9 s Progress in mathematics. 15. (DE-604)BV000004120 15. |
spellingShingle | Vogan, David A. Representations of real reductive Lie Groups Progress in mathematics. Lie, Groupes de Représentations de groupes Lie groups Representations of Lie groups Darstellungstheorie (DE-588)4148816-7 gnd Darstellung (DE-588)4200624-7 gnd Lie-Gruppe (DE-588)4035695-4 gnd Darstellung Mathematik (DE-588)4128289-9 gnd |
subject_GND | (DE-588)4148816-7 (DE-588)4200624-7 (DE-588)4035695-4 (DE-588)4128289-9 |
title | Representations of real reductive Lie Groups |
title_auth | Representations of real reductive Lie Groups |
title_exact_search | Representations of real reductive Lie Groups |
title_full | Representations of real reductive Lie Groups David A. Vogan |
title_fullStr | Representations of real reductive Lie Groups David A. Vogan |
title_full_unstemmed | Representations of real reductive Lie Groups David A. Vogan |
title_short | Representations of real reductive Lie Groups |
title_sort | representations of real reductive lie groups |
topic | Lie, Groupes de Représentations de groupes Lie groups Representations of Lie groups Darstellungstheorie (DE-588)4148816-7 gnd Darstellung (DE-588)4200624-7 gnd Lie-Gruppe (DE-588)4035695-4 gnd Darstellung Mathematik (DE-588)4128289-9 gnd |
topic_facet | Lie, Groupes de Représentations de groupes Lie groups Representations of Lie groups Darstellungstheorie Darstellung Lie-Gruppe Darstellung Mathematik |
volume_link | (DE-604)BV000004120 |
work_keys_str_mv | AT vogandavida representationsofrealreductiveliegroups |