Metric planes and metric vector spaces:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
New York (u.a.)
Wiley
1979
|
Schriftenreihe: | A Wiley-Interscience publication.
|
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | XI, 209 S. graph. Darst. |
ISBN: | 0471049018 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV002263910 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | t | ||
008 | 890928s1979 d||| |||| 00||| eng d | ||
020 | |a 0471049018 |9 0-471-04901-8 | ||
035 | |a (OCoLC)4497215 | ||
035 | |a (DE-599)BVBBV002263910 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-91G |a DE-703 |a DE-355 |a DE-29T |a DE-83 |a DE-188 | ||
050 | 0 | |a QA685 | |
082 | 0 | |a 516.9 |2 19 | |
082 | 0 | |a 515/.73 |2 18 | |
084 | |a SK 380 |0 (DE-625)143235: |2 rvk | ||
100 | 1 | |a Lingenberg, Rolf |e Verfasser |4 aut | |
245 | 1 | 0 | |a Metric planes and metric vector spaces |
264 | 1 | |a New York (u.a.) |b Wiley |c 1979 | |
300 | |a XI, 209 S. |b graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 0 | |a A Wiley-Interscience publication. | |
650 | 4 | |a Geometry, Non-Euclidean | |
650 | 4 | |a Geometry, Plane | |
650 | 4 | |a Vector spaces | |
650 | 0 | 7 | |a Vektorraum |0 (DE-588)4130622-3 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Metrischer Raum |0 (DE-588)4169745-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a S-Gruppe |0 (DE-588)4181126-4 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a S-Gruppe |0 (DE-588)4181126-4 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Vektorraum |0 (DE-588)4130622-3 |D s |
689 | 1 | 1 | |a Metrischer Raum |0 (DE-588)4169745-5 |D s |
689 | 1 | |5 DE-604 | |
856 | 4 | 2 | |m HBZ Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=001487766&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
940 | 1 | |q TUB-nveb | |
999 | |a oai:aleph.bib-bvb.de:BVB01-001487766 | ||
980 | 4 | |a (DE-12)AK13370281 |
Datensatz im Suchindex
_version_ | 1804116721535025152 |
---|---|
adam_text | CONTENTS
Chapter 1. Metric Vector Spaces 1
1. Basic Definitions 1
2. Isotropic Subspaces and Witt-Index 3
3. Representation in a Basis 5
4. Reflections and the Orthogonal Group 6
Chapter 2. Incidence Structures 9
1. Ternary Equivalence Relations 9
2. Incidence Structures 10
3. Projective Incidence Structures and Substructures 12
4. Projective and Affine Incidence Structures Over a Field 14
5. Incidence Structures Over a Metric Vector Space 15
Chapter 3. Metric Concepts 18
1. Classical Euclidean and Non-Euclidean Planes 18
2. Incidence Structures with Orthogonality 21
3. Metric Incidence Structure Over a Metric Vector Space 22
4. Incidence Structures with Reflections 24
5. Complete Metric Planes 24
6. Metric Plane Over a Metric Vector Space 30
7. Definition of Euclidean and Non-Euclidean Coordinate
Planes 33
Chapter 4. S-Groups and S-Group Planes 35
1. Definition 35
2. Group Plane of an S-Group 35
3. Elementary Properties 37
4. Reflections and Motions 38
5. Some Metric Configuration Theorems for S-Group Planes 39
6. The Center of an S-Group 41
7. S-Group Planes and S-Planes 42
IX
x CONTENTS
Chapter 5. S-Group Planes with A-Connected Points 47
1. The Reduction Theorem 47
2. The Theorem of the Set of Perpendiculars to a Line 49
3. The Mapping o-qAB (Gegenpunktpaarung) 54
4. Dropping a Perpendicular to a Given Line Through a
Given Point 58
5. Theorem of Pappus-Brianchon 60
6. Theorem of Desargues 62
7. Embeddable S-Group Planes 66
8. Quadratic Form of S-Group Planes with Completely
Connected Points 66
Chapter 6. Complete S-Group Planes 77
1. Main Theorems on Complete S-Group Planes 77
2. 2-A-Connected Points in an Arbitrary S-Group Plane 78
3. The Five Types of Complete S-Group Planes 83
4. The Elliptic Planes 89
5. The Euclidean Planes 91
6. The Strubecker Planes 95
7. The Hyperbolic-Metric Planes 104
8. The Minkowskian Planes 115
9. Main Theorem on Complete Metric Planes 130
10. Polar Points in Complete S-Group Planes 132
11. Characteristic of a Complete S-Group Plane 135
Chapter 7. S-Group Planes with Completely Connected Points 140
1. Definition of S-Group Planes with Completely Connected
Points and the Main Theorem 140
2. Proper Points on a Line 141
3. Germs of Perspective Collineations 144
4. The Ideal Incidence Structure of an S-Group Plane with
Completely Connected Points 152
5. Remarks 155
6. Normalizer Planes 157
Chapter 8. Finite S-Groups 162
1. Elementary Remarks on Finite S-Groups 162
2. Finite S-Group Planes with Completely Connected Points 165
3. Finite S-Group Planes with 1-A-Connected Points 173
4. Remarks 185
CONTENTS xi
Appendix: Affine and Projective Planes 187
1. AiEne Planes 187
2. Projective Planes 189
3. Projective Closure of an Affine Plane 192
4. Affine Spaces 193
5. Perspective Collineations of a Projective Plane 194
6. Collineations Induced by Linear Mappings 195
7. Projective Reflections 195
8. Projective Reflection Groups 196
9. Definition of Some Classical Groups 201
Bibliography 203
Index 207
|
any_adam_object | 1 |
author | Lingenberg, Rolf |
author_facet | Lingenberg, Rolf |
author_role | aut |
author_sort | Lingenberg, Rolf |
author_variant | r l rl |
building | Verbundindex |
bvnumber | BV002263910 |
callnumber-first | Q - Science |
callnumber-label | QA685 |
callnumber-raw | QA685 |
callnumber-search | QA685 |
callnumber-sort | QA 3685 |
callnumber-subject | QA - Mathematics |
classification_rvk | SK 380 |
ctrlnum | (OCoLC)4497215 (DE-599)BVBBV002263910 |
dewey-full | 516.9 515/.73 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 516 - Geometry 515 - Analysis |
dewey-raw | 516.9 515/.73 |
dewey-search | 516.9 515/.73 |
dewey-sort | 3516.9 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01700nam a2200481 c 4500</leader><controlfield tag="001">BV002263910</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">890928s1979 d||| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0471049018</subfield><subfield code="9">0-471-04901-8</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)4497215</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV002263910</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-91G</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-29T</subfield><subfield code="a">DE-83</subfield><subfield code="a">DE-188</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA685</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">516.9</subfield><subfield code="2">19</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515/.73</subfield><subfield code="2">18</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 380</subfield><subfield code="0">(DE-625)143235:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Lingenberg, Rolf</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Metric planes and metric vector spaces</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York (u.a.)</subfield><subfield code="b">Wiley</subfield><subfield code="c">1979</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XI, 209 S.</subfield><subfield code="b">graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">A Wiley-Interscience publication.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Geometry, Non-Euclidean</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Geometry, Plane</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Vector spaces</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Vektorraum</subfield><subfield code="0">(DE-588)4130622-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Metrischer Raum</subfield><subfield code="0">(DE-588)4169745-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">S-Gruppe</subfield><subfield code="0">(DE-588)4181126-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">S-Gruppe</subfield><subfield code="0">(DE-588)4181126-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Vektorraum</subfield><subfield code="0">(DE-588)4130622-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Metrischer Raum</subfield><subfield code="0">(DE-588)4169745-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HBZ Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=001487766&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">TUB-nveb</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-001487766</subfield></datafield><datafield tag="980" ind1="4" ind2=" "><subfield code="a">(DE-12)AK13370281</subfield></datafield></record></collection> |
id | DE-604.BV002263910 |
illustrated | Illustrated |
indexdate | 2024-07-09T15:43:01Z |
institution | BVB |
isbn | 0471049018 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-001487766 |
oclc_num | 4497215 |
open_access_boolean | |
owner | DE-12 DE-91G DE-BY-TUM DE-703 DE-355 DE-BY-UBR DE-29T DE-83 DE-188 |
owner_facet | DE-12 DE-91G DE-BY-TUM DE-703 DE-355 DE-BY-UBR DE-29T DE-83 DE-188 |
physical | XI, 209 S. graph. Darst. |
psigel | TUB-nveb |
publishDate | 1979 |
publishDateSearch | 1979 |
publishDateSort | 1979 |
publisher | Wiley |
record_format | marc |
series2 | A Wiley-Interscience publication. |
spelling | Lingenberg, Rolf Verfasser aut Metric planes and metric vector spaces New York (u.a.) Wiley 1979 XI, 209 S. graph. Darst. txt rdacontent n rdamedia nc rdacarrier A Wiley-Interscience publication. Geometry, Non-Euclidean Geometry, Plane Vector spaces Vektorraum (DE-588)4130622-3 gnd rswk-swf Metrischer Raum (DE-588)4169745-5 gnd rswk-swf S-Gruppe (DE-588)4181126-4 gnd rswk-swf S-Gruppe (DE-588)4181126-4 s DE-604 Vektorraum (DE-588)4130622-3 s Metrischer Raum (DE-588)4169745-5 s HBZ Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=001487766&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Lingenberg, Rolf Metric planes and metric vector spaces Geometry, Non-Euclidean Geometry, Plane Vector spaces Vektorraum (DE-588)4130622-3 gnd Metrischer Raum (DE-588)4169745-5 gnd S-Gruppe (DE-588)4181126-4 gnd |
subject_GND | (DE-588)4130622-3 (DE-588)4169745-5 (DE-588)4181126-4 |
title | Metric planes and metric vector spaces |
title_auth | Metric planes and metric vector spaces |
title_exact_search | Metric planes and metric vector spaces |
title_full | Metric planes and metric vector spaces |
title_fullStr | Metric planes and metric vector spaces |
title_full_unstemmed | Metric planes and metric vector spaces |
title_short | Metric planes and metric vector spaces |
title_sort | metric planes and metric vector spaces |
topic | Geometry, Non-Euclidean Geometry, Plane Vector spaces Vektorraum (DE-588)4130622-3 gnd Metrischer Raum (DE-588)4169745-5 gnd S-Gruppe (DE-588)4181126-4 gnd |
topic_facet | Geometry, Non-Euclidean Geometry, Plane Vector spaces Vektorraum Metrischer Raum S-Gruppe |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=001487766&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT lingenbergrolf metricplanesandmetricvectorspaces |