Non-abelian minimal closed ideals of transitive Lie algebras:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Princeton, NJ
Princeton Univ. Press
1981
|
Schriftenreihe: | Mathematical notes
25 |
Schlagworte: | |
Beschreibung: | 220 S. |
ISBN: | 0691082510 |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV002247418 | ||
003 | DE-604 | ||
005 | 20090326 | ||
007 | t | ||
008 | 890928s1981 |||| 00||| eng d | ||
020 | |a 0691082510 |9 0-691-08251-0 | ||
035 | |a (OCoLC)5676425 | ||
035 | |a (DE-599)BVBBV002247418 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-91G |a DE-384 |a DE-703 |a DE-739 |a DE-355 |a DE-29T |a DE-19 |a DE-83 |a DE-188 | ||
050 | 0 | |a QA252.3 | |
082 | 0 | |a 512/.55 | |
084 | |a SI 870 |0 (DE-625)143208: |2 rvk | ||
084 | |a 17B20 |2 msc | ||
100 | 1 | |a Conn, Jack F. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Non-abelian minimal closed ideals of transitive Lie algebras |c by Jack F. Conn |
264 | 1 | |a Princeton, NJ |b Princeton Univ. Press |c 1981 | |
300 | |a 220 S. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Mathematical notes |v 25 | |
650 | 4 | |a Idéaux (Algèbre) | |
650 | 4 | |a Lie, Algèbres de | |
650 | 4 | |a Pseudo-groupes (Mathématiques) | |
650 | 4 | |a Ideals (Algebra) | |
650 | 4 | |a Lie algebras | |
650 | 4 | |a Pseudogroups | |
650 | 0 | 7 | |a Ideal |g Mathematik |0 (DE-588)4161198-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Lie-Algebra |0 (DE-588)4130355-6 |2 gnd |9 rswk-swf |
655 | 7 | |a Transitive Lie-Algebra |2 gnd |9 rswk-swf | |
689 | 0 | 0 | |a Transitive Lie-Algebra |A f |
689 | 0 | 1 | |a Ideal |g Mathematik |0 (DE-588)4161198-6 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Lie-Algebra |0 (DE-588)4130355-6 |D s |
689 | 1 | |5 DE-604 | |
689 | 2 | 0 | |a Lie-Algebra |0 (DE-588)4130355-6 |D s |
689 | 2 | 1 | |a Ideal |g Mathematik |0 (DE-588)4161198-6 |D s |
689 | 2 | |5 DE-604 | |
830 | 0 | |a Mathematical notes |v 25 |w (DE-604)BV000003793 |9 25 | |
999 | |a oai:aleph.bib-bvb.de:BVB01-001476866 | ||
980 | 4 | |a (DE-12)AK04450247 |
Datensatz im Suchindex
_version_ | 1804116703441846272 |
---|---|
any_adam_object | |
author | Conn, Jack F. |
author_facet | Conn, Jack F. |
author_role | aut |
author_sort | Conn, Jack F. |
author_variant | j f c jf jfc |
building | Verbundindex |
bvnumber | BV002247418 |
callnumber-first | Q - Science |
callnumber-label | QA252 |
callnumber-raw | QA252.3 |
callnumber-search | QA252.3 |
callnumber-sort | QA 3252.3 |
callnumber-subject | QA - Mathematics |
classification_rvk | SI 870 |
ctrlnum | (OCoLC)5676425 (DE-599)BVBBV002247418 |
dewey-full | 512/.55 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 512 - Algebra |
dewey-raw | 512/.55 |
dewey-search | 512/.55 |
dewey-sort | 3512 255 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01763nam a2200541 cb4500</leader><controlfield tag="001">BV002247418</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20090326 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">890928s1981 |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0691082510</subfield><subfield code="9">0-691-08251-0</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)5676425</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV002247418</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-91G</subfield><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-739</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-29T</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-83</subfield><subfield code="a">DE-188</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA252.3</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">512/.55</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SI 870</subfield><subfield code="0">(DE-625)143208:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">17B20</subfield><subfield code="2">msc</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Conn, Jack F.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Non-abelian minimal closed ideals of transitive Lie algebras</subfield><subfield code="c">by Jack F. Conn</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Princeton, NJ</subfield><subfield code="b">Princeton Univ. Press</subfield><subfield code="c">1981</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">220 S.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Mathematical notes</subfield><subfield code="v">25</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Idéaux (Algèbre)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Lie, Algèbres de</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Pseudo-groupes (Mathématiques)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ideals (Algebra)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Lie algebras</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Pseudogroups</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Ideal</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4161198-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Lie-Algebra</subfield><subfield code="0">(DE-588)4130355-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="a">Transitive Lie-Algebra</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Transitive Lie-Algebra</subfield><subfield code="A">f</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Ideal</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4161198-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Lie-Algebra</subfield><subfield code="0">(DE-588)4130355-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Lie-Algebra</subfield><subfield code="0">(DE-588)4130355-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2="1"><subfield code="a">Ideal</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4161198-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Mathematical notes</subfield><subfield code="v">25</subfield><subfield code="w">(DE-604)BV000003793</subfield><subfield code="9">25</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-001476866</subfield></datafield><datafield tag="980" ind1="4" ind2=" "><subfield code="a">(DE-12)AK04450247</subfield></datafield></record></collection> |
genre | Transitive Lie-Algebra gnd |
genre_facet | Transitive Lie-Algebra |
id | DE-604.BV002247418 |
illustrated | Not Illustrated |
indexdate | 2024-07-09T15:42:43Z |
institution | BVB |
isbn | 0691082510 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-001476866 |
oclc_num | 5676425 |
open_access_boolean | |
owner | DE-12 DE-91G DE-BY-TUM DE-384 DE-703 DE-739 DE-355 DE-BY-UBR DE-29T DE-19 DE-BY-UBM DE-83 DE-188 |
owner_facet | DE-12 DE-91G DE-BY-TUM DE-384 DE-703 DE-739 DE-355 DE-BY-UBR DE-29T DE-19 DE-BY-UBM DE-83 DE-188 |
physical | 220 S. |
publishDate | 1981 |
publishDateSearch | 1981 |
publishDateSort | 1981 |
publisher | Princeton Univ. Press |
record_format | marc |
series | Mathematical notes |
series2 | Mathematical notes |
spelling | Conn, Jack F. Verfasser aut Non-abelian minimal closed ideals of transitive Lie algebras by Jack F. Conn Princeton, NJ Princeton Univ. Press 1981 220 S. txt rdacontent n rdamedia nc rdacarrier Mathematical notes 25 Idéaux (Algèbre) Lie, Algèbres de Pseudo-groupes (Mathématiques) Ideals (Algebra) Lie algebras Pseudogroups Ideal Mathematik (DE-588)4161198-6 gnd rswk-swf Lie-Algebra (DE-588)4130355-6 gnd rswk-swf Transitive Lie-Algebra gnd rswk-swf Transitive Lie-Algebra f Ideal Mathematik (DE-588)4161198-6 s DE-604 Lie-Algebra (DE-588)4130355-6 s Mathematical notes 25 (DE-604)BV000003793 25 |
spellingShingle | Conn, Jack F. Non-abelian minimal closed ideals of transitive Lie algebras Mathematical notes Idéaux (Algèbre) Lie, Algèbres de Pseudo-groupes (Mathématiques) Ideals (Algebra) Lie algebras Pseudogroups Ideal Mathematik (DE-588)4161198-6 gnd Lie-Algebra (DE-588)4130355-6 gnd |
subject_GND | (DE-588)4161198-6 (DE-588)4130355-6 |
title | Non-abelian minimal closed ideals of transitive Lie algebras |
title_auth | Non-abelian minimal closed ideals of transitive Lie algebras |
title_exact_search | Non-abelian minimal closed ideals of transitive Lie algebras |
title_full | Non-abelian minimal closed ideals of transitive Lie algebras by Jack F. Conn |
title_fullStr | Non-abelian minimal closed ideals of transitive Lie algebras by Jack F. Conn |
title_full_unstemmed | Non-abelian minimal closed ideals of transitive Lie algebras by Jack F. Conn |
title_short | Non-abelian minimal closed ideals of transitive Lie algebras |
title_sort | non abelian minimal closed ideals of transitive lie algebras |
topic | Idéaux (Algèbre) Lie, Algèbres de Pseudo-groupes (Mathématiques) Ideals (Algebra) Lie algebras Pseudogroups Ideal Mathematik (DE-588)4161198-6 gnd Lie-Algebra (DE-588)4130355-6 gnd |
topic_facet | Idéaux (Algèbre) Lie, Algèbres de Pseudo-groupes (Mathématiques) Ideals (Algebra) Lie algebras Pseudogroups Ideal Mathematik Lie-Algebra Transitive Lie-Algebra |
volume_link | (DE-604)BV000003793 |
work_keys_str_mv | AT connjackf nonabelianminimalclosedidealsoftransitiveliealgebras |