Neural dynamics of adaptive sensory-motor control:
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
New York u.a.
Pergamon Pr.
1989
|
Ausgabe: | Expanded ed. |
Schriftenreihe: | Neural networks, research and applications
|
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | XVI, 443 S. |
ISBN: | 008036828X |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV002238048 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | t | ||
008 | 891120s1989 |||| 00||| engod | ||
020 | |a 008036828X |9 0-08-036828-X | ||
035 | |a (OCoLC)19066655 | ||
035 | |a (DE-599)BVBBV002238048 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
049 | |a DE-12 | ||
050 | 0 | |a QP477.5 | |
082 | 0 | |a 599/.01823 |2 19 | |
100 | 1 | |a Grossberg, Stephen |e Verfasser |4 aut | |
245 | 1 | 0 | |a Neural dynamics of adaptive sensory-motor control |c Stephen Grossberg ; Michael Kuperstein |
250 | |a Expanded ed. | ||
264 | 1 | |a New York u.a. |b Pergamon Pr. |c 1989 | |
300 | |a XVI, 443 S. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 0 | |a Neural networks, research and applications | |
650 | 4 | |a Neural networks (Neurobiology) | |
650 | 4 | |a Neuroophthalmology | |
650 | 4 | |a Saccadic eye movements | |
650 | 4 | |a Sensorimotor integration | |
650 | 0 | 7 | |a Neuropsychologie |0 (DE-588)4135740-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Motorik |0 (DE-588)4040385-3 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Bewegungskoordination |0 (DE-588)4145145-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Sensomotorik |0 (DE-588)4203593-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Arm |0 (DE-588)4002931-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Sensorik |g Neurophysiologie |0 (DE-588)4194931-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Adaptives System |0 (DE-588)4247928-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Auge |0 (DE-588)4122841-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Regelkreis |0 (DE-588)4133165-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Neuronales Netz |0 (DE-588)4226127-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Sakkade |0 (DE-588)4178935-0 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Sakkade |0 (DE-588)4178935-0 |D s |
689 | 0 | 1 | |a Sensomotorik |0 (DE-588)4203593-4 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Sensomotorik |0 (DE-588)4203593-4 |D s |
689 | 1 | 1 | |a Regelkreis |0 (DE-588)4133165-5 |D s |
689 | 1 | 2 | |a Neuropsychologie |0 (DE-588)4135740-1 |D s |
689 | 1 | |8 1\p |5 DE-604 | |
689 | 2 | 0 | |a Sakkade |0 (DE-588)4178935-0 |D s |
689 | 2 | 1 | |a Motorik |0 (DE-588)4040385-3 |D s |
689 | 2 | 2 | |a Sensorik |g Neurophysiologie |0 (DE-588)4194931-6 |D s |
689 | 2 | |8 2\p |5 DE-604 | |
689 | 3 | 0 | |a Sakkade |0 (DE-588)4178935-0 |D s |
689 | 3 | 1 | |a Neuropsychologie |0 (DE-588)4135740-1 |D s |
689 | 3 | |8 3\p |5 DE-604 | |
689 | 4 | 0 | |a Arm |0 (DE-588)4002931-1 |D s |
689 | 4 | |8 4\p |5 DE-604 | |
689 | 5 | 0 | |a Neuronales Netz |0 (DE-588)4226127-2 |D s |
689 | 5 | |8 5\p |5 DE-604 | |
689 | 6 | 0 | |a Adaptives System |0 (DE-588)4247928-9 |D s |
689 | 6 | |8 6\p |5 DE-604 | |
689 | 7 | 0 | |a Auge |0 (DE-588)4122841-8 |D s |
689 | 7 | |8 7\p |5 DE-604 | |
689 | 8 | 0 | |a Bewegungskoordination |0 (DE-588)4145145-4 |D s |
689 | 8 | |8 8\p |5 DE-604 | |
700 | 1 | |a Kuperstein, Michael |e Verfasser |4 aut | |
856 | 4 | 2 | |m HEBIS Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=001470858&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-001470858 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 3\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 4\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 5\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 6\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 7\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 8\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804116693551677440 |
---|---|
adam_text | NEURAL DYNAMICS
OF ADAPTIVE
SENSORY-MOTOR CONTROL
EXPANDED EDITION
Stephen Grossberg
Center for Adaptive Systems,
Boston University
Michael Kuperstein
Neurogen, Brookline, MA
r,c 5 i
PERGAMON PRESS
New York • Oxford • Beijing • Frankfurt • Sao Paulo • Sydney • Tokyo • Toronto
TABLE OF CONTENTS
PREFACE TO THE EXPANDED EDITION xvii
PREFACE TO THE ORIGINAL EDITION xix
CHAPTER 1: MULTIPLE LEARNING PROBLEMS
ARE SOLVED BY SENSORY-MOTOR SYSTEMS 1
1 1 Introduction: Brain Designs Are Adaptive Designs 1
1 2 Eye Movements as a Model Sensory-Motor System 2
1 3 Intermodality Circular Reactions: Learning Gated by
Comparison of Target Position with Present Position
A Reciprocal Associative Transformations between
Target Position Maps 5
B Matching of Target Position with Present Position 5
C Intermodality Map Learning is Gated by
Intramodality Matching 5
D Dimensional Consistency: Head Coordinate Maps 7
1 4 Learning a Target Position Map 7
A A Many-to-One Transform 7
B Map Invariance 9
C A Multimodal Map 9
D Error-Tolerance and Map Learning 9
E Self-Consistent Map Learning 9
F A Self-Regulating Map 11
1 5 From Multimodal Target Map to Unimodal Motor Map 11
1 6 Vector Maps from Comparisons of Target Position Maps
and Present Position Maps 12
1 7 Automatic Compensation for Present Position:
Code Compression 13
1 8 Outflow versus Inflow in the Registration of Present Position 13
1 9 Corollary DTschargesjand Calibration of Muscle
Plant Contractions 15
1 10 Outflow-Inflow Pattern Matches and Linearization
of Muscle Responses: Automatic Gain Control 16
1 11 Motor Vectors Calibrated by Visual Error Signals 17
1 12 Postural Stability: Separate Calibration of
Muscle Length and Tension 18
1 13 Planned versus Reactive Movements:
The Rear View Mirror Problem 19
1 14 Attentional Gating 21
1 15 Intermodality Interactions in a Head Coordinate Frame 21
1 16 Head Coordinate Maps Encode Predictive Saccades 23
1 17 The Relationship between Macrotheory and Microtheory 27
vii
CHAPTER 2: PARALLEL PROCESSING OF
MOVEMENT AND ERROR SIGNALS 31
2 1 Sensory-Motor Coordinates: Hemifield Gradients 31
2 2 Choice of Fixation Light: Network Competition 33
2 3 Correcting Fixation Errors: Competition Precedes
Storage in Sensory Short Term Memory 33
A Short Term Memory of the First Light 33
B Competition Stage Precedes Sensory Short Term
Memory Stage 35
2 4 Parallel Processing of Movement and Error Signals 35
2 5 Why Does A Saccade Generator Exist? 37
2 6 Competitive Choice and Storage in Short Term Memory 39
A Shunting Interactions 40
B Ratio Processing and Normalization of Spatial Patterns
by Shunting On-Center Off-Surround Networks 40
C Featural Noise Suppression: Adaptation Level
and Pattern Matching 42
D Receptive Fields, Spatial Frequencies, and Edges 44
E Short-Term Memory, Feedback Competitive Networks,
and Nonlinear Cross-Correlation 45
F Signal Noise Suppression and Nonlinear Signals 45
G Dynamic Control of Network Sensitivity: Quenching
Threshold and Attentional Gain Control 46
H Competitive Choice 48
I Attentional Biasing and Competitive Masking 50
CHAPTER 3: SACCADIC LEARNING USING
VISUAL ERROR SIGNALS: SELF-MOTION VERSUS
WORLD-MOTION AND CEREBELLAR DYNAMICS 55
3 1 CompensatiorTfor Initial Position in the Movement Signal 55
3 2 Explicit versus Implicit Knowledge of Initial Position 55
3 3 Characterization of Correctable Errors 57
3 4 Self-Movement versus World-Movement:
Ballistic versus Continuous Movement 61
35A Universal Adaptive Gain Control Mechanism:
Saccades, VOR, Posture, and Muscle Gain 64
3 6 Compatibility of Design Hypotheses 64
A Perform and Test 65
B Visual Invariance during Saccades 65
3 7 Different Coordinates for Unconditioned and
Conditioned Movement Systems 65
viii
A Unconditioned Movements due to Prewired
Connection Gradients 66
B Conditioned Gain Control due to Visual Error Signals 66
C Opponent Processing of Visual Error Signals 67
3 8 Correcting Undershoot, Overshoot, and Skewed
Saccadic Errors 67
3 9 Curvature Distorting Contact Lens versus Inverting
Contact Lens 69
3 10 Equal Access to Error Signals: Separate Anatomies for
Unconditioned Movements and Conditioned Gain Changes 72
3 11 Anatomical Interpretation of the Adaptive Gain Stage:
The Cerebellum 72
3 12 Superposition of Sampling Map and Error Signal Map:
Logarithms and Bidirectional Parallel Fibers 74
3 13 Fractured Somatotopy and/or Bilateral
Cerebellar Organization 77
3 14 More Constraints on Cerebellar Learning 79
3 15 Dual Action, Incremental Learning, and
Error Signal Attenuation 79
3 16 Numerical Studies of Adaptive Foveation due to
Cerebellar Gain Changes: Learned Compensation
for System Nonlinearities 82
A Purely Retinotopic Sampling 83
B Invariant Target Position Map 85
C Invariant Target Position Map Plus Retinotopic Map 85
D Retinotopic Map Plus Eye Position Map 85
E Noninvariant Target Position Map 88
F Retinotopic Map Plus Initial Eye Position Map
Plus Invariant Target Position Map 88
3 17 Shared Processing Load and Recovery from Lesions 88
3 18 Models of Saccadic Error Correction 90
A Purely Retinotopic Sampling 97
B Invariant Target Position Map 98
C Invariant Target Position Map Plus Retinotopic Map 99
D Retinotopic Map Plus Eye Position Map 99
E Noninvariant Target Position Map 99
F Retinotopic Map Plus Initial Eye Position Map
Plus Invariant Target Position Map 100
3 19 Dynamic Coasting 100
3 20 Outflow-Inflow Comparisons: A Large Movement as a
Series of Small Movement Segments 101
3 21 Mismatch due to Plant Nonlinearity or to
Dynamic Coasting? 101
3 22 Adaptive Control of Dynamic Coasting 102
ix
CHAPTER 4: COMPARING TARGET POSITION WITH
PRESENT POSITION: NEURAL VECTORS 111
4 1 Reconciling Visually Reactive and Intentional Computations 111
4 2 Experimental Evidence for Vector Inputs to the Superior
Colliculus 111
4 3 Adaptive Inhibitory Efference Copy in Motor Control 113
4 4 Multistage Elaboration of a Vector Map 115
4 5 Attention Modulation in Parietal Cortex and
Inhibitory Gating of SC Signals:
The Delay in Vector Subtraction 116
4 6 Stages in the Adaptive Neural Computation of a
Vector Difference 120
A Head-to-Muscle Coordinate Transform 120
B Present Eye Position Signals: Corollary Discharges 121
C Simultaneous Calibration of the Head-to-Muscle
Transform and of the Vector Difference between
Target Position and Eye Position 121
D Visually-Mediated Gating of Vector Outputs 123
4 7 Modulators of Head-to-Muscle Coordinate Learning 124
4 8 Mathematical Design of the Head-Muscle Interface 126
4 9 Muscle Linearization and Retinotopic Recoding 128
A Linearization of Muscle Response 129
B Retinotopic Recoding 130
4 10 Saccade Staircases and Automatic Compensation
for Present Position 131
4 11 Corrective Saccades in the Dark: An Outflow
Interpretation 133
CHAPTER 5: ADAPTIVE LINEARIZATION
OF THE MUSCLE-PLANT 135
5 1 Fast Corrective Saccades versus Slow Muscle Linearization 135
5 2 Muscle Linearization Network 135
5 3 Cerebellar Direct Response Cells 139
5 4 Adaptation to Strabismus Surgery 140
5 5 Error Correction with and without Adaptive Gain Changes 142
5 6 Matching within the Outflow-Inflow Interface 142
5 7 An Explanation of the Steinbach and Smith Data 147
58A Role for Golgi Tendon Organs in Muscle Linearization 148
5 9 Dynamic Linearization: Adaptive Sampling during Saccades 151
5 10 An Agonist-Antagonist Ratio Scale 151
5 11 Sampling from a Spatial Map of Outflow Position 153
x
CHAPTER 6: SPATIAL MAPS OF MOTOR PATTERNS 155
6 1 The General Problem: Transforming Pattern Intensities
into Map Positions 155
6 2 Antagonistic Positional Gradients, Contrast Enhancement,
and Coincidence Detectors 155
6 3 Position-Threshold-Slope Shift Maps 160
6 4 Self-Organizing Spatial Maps 167
6 5 Activity-Dependent Map Formation 170
6 6 Coding of Movement Length and Direction 172
6 7 Normalization of Total PTS Shift Map 172
CHAPTER 7: SACCADE GENERATOR AND
SACCADE RESET 175
7 1 Saccade Generator 175
7 2 Converting an Intensity Code into a Duration Code 175
7 3 Summation of Retinotopic and Initial Eye Position
Signals to the Saccade Generator 179
7 4 The Eye Position Update Network 179
7 5 TWo Types of Initial Position Compensation: Eye Position
Update and Muscle Linearization 180
7 6 Saccade Staircases 181
7 7 Circuit Design of the Eye Position Update Network 182
78A Saccade Generator Circuit 184
7 9 Computer Simulations of a Saccade Generator Model 187
7 10 Comparison of Computer Simulations with Neural Data 189
CHAPTER 8: POSTURAL STABILITY AND
LENGTH-TENSION REGULATION 193
8 1 Separate Postural and Movement Systems 193
8 2 Tension Equalization Network 194
8 3 Design of the Tension Equalization Network 194
8 4 Adaptive Step Gain and Pulse Gain:
Correcting Post-Saccadic Drift 198
8 5 Relationship to the Vestibulo-Ocular Reflex 199
8 6 Cerebellar Functional Heterogeneity 201
CHAPTER 9: SACCADIC RHYTHM AND
PREDICTIVE MOVEMENT SEQUENCES 203
9 1 Rhythmic Choices among Multiple Movement Sources 203
xi
9 2 Distinguishing Correct Predictive Saccades from
Incorrect Individual Saccades 204
9 3 The Temporal Control of Predictive Saccades 205
9 4 Storage of Temporal Order Information 206
A Storage of Temporal Order, Target Match,
and Memory Reset 206
B Read-Out and STM Storage of a Target Choice 206
C HMI Mismatch, Output Gate Closure, and
Target Self-Inhibition 206
D Read-Out, Reset, and STM Storage of
Retinotopic Commands 207
E LTM Printing 207
F Match-Induced Reset of the TPM 207
9 5 Design of a Predictive Command Network 210
9 6 Saccade Generation by Predictive Commands 214
9 7 TWo Types of Output Gates: Target-Driven Gates
and Saccade-Driven Gates 217
9 8 Parietal Light-Sensitive and Saccade Neurons 218
9 9 Switching between Movement and Postural Eye
Position Maps: Frontal Eye Field Control 220
9 10 Direct Computation of Predictive Difference Vectors
from Stored Retinotopic Positions? 222
A Getting Started 222
B Vector Sign Reversal 224
C Motor Recoding and Dimensional Inconsistency 224
D Opponent Recoding and Linearity 224
CHAPTER 10: FORMATION OF AN INVARIANT
TARGET POSITION MAP 227
10 1 Invariant Self-Regulating Multimodal Maps 227
10 2 Prewired Positional-Gradients: The Mean Value
Property 228
10 3 Self-Organizing Target Position Maps: Multimodal
Sampling of a Unimodal Eye Position Map 232
10 4 Double Duty by Sampling Maps and their
Neural Interpretation 233
10 5 Associative Learning at Autoreceptive Synaptic
Knobs 234
10 6 Multimodal Learning of Invariant Self-Regulating
Spatial Maps 237
10 7 Multimodal Learning of an Invariant Self-Regulating
Target Position Map 245
10 8 Associative Pattern Learning 249
xii
CHAPTER 11: VISUALLY REACTIVE, MULTIMODAL,
INTENTIONAL, AND PREDICTIVE MOVEMENTS:
A SYNTHESIS 253
11 1 Avoiding Infinite Regress: Planned Movements Share
Reactive Movement Parameters 253
11 2 Learning and Competition from a Vector-Based Map
to a Light-Based Map 254
11 3 Associative Pattern Learning and Competitive Choice:
Non-Hebbian Learning Rule 256
11 4 Light Intensity, Motion, Attentional, and Multimodal
Interactions within the Parietal Cortex 260
11 5 Nonspecific and Specific Attentional Mechanisms 263
11 6 Multiple Retinotopic Maps 264
11 7 Interactions between Superior Colliculus, Visual Cortex,
and Parietal Cortex 266
11 8 Multiple Target Position Maps within Parietal Cortex
and Frontal Eye Fields 269
11 9 Learning Multiply-Activated Target Position Maps 269
11 10 Multiple Parietal and Frontal Eye Field Vector Systems 273
11 11 Learning Neural Vectors and Adaptive Gains in a
Predictive Movement System 275
11 12 Frontal Eye Field Control of Voluntary Saccadic
Eye Movements and Posture: Cell Types 279
11 13 Coupled Vector and Adaptive Gain Learning 281
11 14 Gating of Learning, Movement, and Posture 282
A Reading-In, Reset, and Storage of
Movement Commands 284
B Read-Out and Competition of Movement Commands 286
C Gating of Posture and Learning 288
11 15 When Saccade Choice May Fail: Saccadic Averaging
and Partial Vector Compensation 288
CHAPTER 12: ARE THERE UNIVERSAL PRINCIPLES
OF SENSORY-MOTOR CONTROL? 291
CHAPTER 13: NEURAL DYNAMICS OF PLANNED
ARM MOVEMENTS: EMERGENT INVARIANTS
AND SPEED-ACCURACY PROPERTIES DURING
TRAJECTORY FORMATION 293
Daniel Bullock and Stephen Grossberg
13 1 Introduction: Are Movement Invariants Explicitly Planned? 294
13 2 Flexible Organization of Muscle Groups into Synergies 296
yiii
13 3 Synchronous Movement of Synergies 296
13 4 Factoring Target Position and Velocity Control 298
13 5 Synchrony versus Fitts Law: The Need for a
Neural Analysis of Synergy Formation 299
13 6 Some General Issues in Sensory-Motor Planning;
Multiple Uses of Outflow versus Inflow Signals 300
13 7 Neural Control of Arm Position Changes:
Beyond the STE Model 305
13 8 Gradual Updating of PPC s during Trajectory Formation 306
13 9 Duration Invariance during Isotonic Movements
and Isometric Contractions
13 10 Compensatory Properties of the PPC Updating Process
13 11 Target Switching Experiments: Velocity Amplification,
GO Signal, and Fitts Law
13 12 Velocity Profile Invariance and Asymmetry
13 13 Vector Cells in Motor Cortex
13 14 Learning Constraints Mold Arm Control Circuits
13 15 Comparing Target Position with Present Position to
Gate Intermodality Learning
13 16 Trajectory Formation using DV s: Automatic
Compensation for Present Position
13 17 Matching and Vector Integration during
Trajectory Formation
13 18 Intentionality and the GO Signal: Motor Priming
without Movement
13 19 Synchrony, Variable Speed Control, and Fast Freeze
13 20 Opponent Processing of Movement Commands
13 21 System Equations
13 22 Computer Simulation of Movement Synchrony and
Duration Invariance
13 23 Computer Simulation of Changing Velocity Profile
Asymmetry at Higher Movement Speeds 339
13 24 Why-Fastei than-Linear or Sigmoid Onset Functions? 342
13 25 Computer Simulation of-Velocity Amplification during
Target Switching 345
13 26 Reconciling Staggered Onset Times with
Synchronous Termination Times 345
13 27 Computer Simulation of the Inverse Relation between
Duration and Peak Velocity 348
13 28 Speed-Accuracy Trade-off: Woodworth s Law and Fitts Law 352
13 29 Computer Simulation of Peak Acceleration Data 355
13 30 Updating the PPC using Inflow Signals during
Passive Movements 356
13 31 Concluding Remarks 359
Appendix 1: Bell-Shaped Velocity Profile, Fitts Law, and
Staggered Onset Times 360
xiv
Appendix 2: Synchrony and Duration Invariance
Appendix 3: Passive Update of Position
CHAPTER 14: A COMPARATIVE ANALYSIS
OF NEURAL MECHANISMS, RECENT DATA,
AND ALTERNATIVE MODELS 371
Stephen Grossberg
14 1 Comparative Analysis of Neural Models 371
14 2 Comparative Analysis of Movement Vectors in Eye
and Arm Movements 372
14 3 Map Vectors and Difference Vectors 372
14 4 Vector Integration to Endpoint and GO Signal
Modulation in Arm Movement Control 373
14 5 GO Signal Generator in Globus Pallidus 374
14 6 Factorization of Position and Velocity Control 375
14 7 Amplification of Peak Velocity and a GO Signal Test 375
14 8 Prediction and Test of Cells that Multiplex a
Code for Local Velocity 376
14 9 Learning an Associate Map between Target Position Maps
of the Eye-Head and Hand-Arm Movement System 378
14 10 Visually Reactive Movements and the Vector Map Code
within Superior Colliculus 379
14 11 Three Interacting Coordinate Systems: Retinotopic,
Motor Sector, and Map Vector 379
14 12 Automatic Gain Control of Movement Commands by
Visual Error Signals: Cerebellar Learning 380
14 13 Learning a Motor Synergy: Opponent Processing of
Error Signals 380
14 14 The Equal Access Constraint 381
14 15 The Vector-to-Sector Transform: Dimensioned Consistency
of Planned Vectors and Reactive
Retinotopic Commands 382
14 16 Movement Gating, Intermodal Mapping, and
Compensation between Planned and Reactive Movements 383
14 17 Data and Models of Posterior Parietal Target Positions
Coded in Head-Centered Coordinates 384
14 18 Parallel Maps of Eye Position: An Application of Competitive
Learning to Gaussian and Linear Teaching Vectors 385
14 19 Back Propagation Model of Target Position:
Comparison with Competitive Learning 386
14 20 Comparison of Mammalian and Anuran Head
and Vector Representations 389
xv
14 21 The Transformation from Head-Centered Eye Movement
Maps to Body-Centered Arm Movement Maps:
Neds Corollary Discharges as a Map Teaching Signal 390
14 22 Transformation from Auditory Maps to Visually-Activated
Eye Movement Maps 391
14 23 A Related Model of Auditory-to-Visual Transformation:
Neuronal Group Selection 392
14 24 Predictive Saccades and Saccade Sequences:
The LTM Inyariance Principle 392
14 25 Comparison of Saccade Generator Models 393
14 26 Applications of the Model s Circular Reaction to Eye-Hand
Coordination by an Adaptive Robot 394
REFERENCES 395
AUTHOR INDEX 419
SUBJECT INDEX 423
xvi
|
any_adam_object | 1 |
author | Grossberg, Stephen Kuperstein, Michael |
author_facet | Grossberg, Stephen Kuperstein, Michael |
author_role | aut aut |
author_sort | Grossberg, Stephen |
author_variant | s g sg m k mk |
building | Verbundindex |
bvnumber | BV002238048 |
callnumber-first | Q - Science |
callnumber-label | QP477 |
callnumber-raw | QP477.5 |
callnumber-search | QP477.5 |
callnumber-sort | QP 3477.5 |
callnumber-subject | QP - Physiology |
ctrlnum | (OCoLC)19066655 (DE-599)BVBBV002238048 |
dewey-full | 599/.01823 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 599 - Mammalia |
dewey-raw | 599/.01823 |
dewey-search | 599/.01823 |
dewey-sort | 3599 41823 |
dewey-tens | 590 - Animals |
discipline | Biologie |
edition | Expanded ed. |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03736nam a2200889 c 4500</leader><controlfield tag="001">BV002238048</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">891120s1989 |||| 00||| engod</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">008036828X</subfield><subfield code="9">0-08-036828-X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)19066655</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV002238048</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QP477.5</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">599/.01823</subfield><subfield code="2">19</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Grossberg, Stephen</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Neural dynamics of adaptive sensory-motor control</subfield><subfield code="c">Stephen Grossberg ; Michael Kuperstein</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">Expanded ed.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York u.a.</subfield><subfield code="b">Pergamon Pr.</subfield><subfield code="c">1989</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XVI, 443 S.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Neural networks, research and applications</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Neural networks (Neurobiology)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Neuroophthalmology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Saccadic eye movements</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Sensorimotor integration</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Neuropsychologie</subfield><subfield code="0">(DE-588)4135740-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Motorik</subfield><subfield code="0">(DE-588)4040385-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Bewegungskoordination</subfield><subfield code="0">(DE-588)4145145-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Sensomotorik</subfield><subfield code="0">(DE-588)4203593-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Arm</subfield><subfield code="0">(DE-588)4002931-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Sensorik</subfield><subfield code="g">Neurophysiologie</subfield><subfield code="0">(DE-588)4194931-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Adaptives System</subfield><subfield code="0">(DE-588)4247928-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Auge</subfield><subfield code="0">(DE-588)4122841-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Regelkreis</subfield><subfield code="0">(DE-588)4133165-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Neuronales Netz</subfield><subfield code="0">(DE-588)4226127-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Sakkade</subfield><subfield code="0">(DE-588)4178935-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Sakkade</subfield><subfield code="0">(DE-588)4178935-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Sensomotorik</subfield><subfield code="0">(DE-588)4203593-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Sensomotorik</subfield><subfield code="0">(DE-588)4203593-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Regelkreis</subfield><subfield code="0">(DE-588)4133165-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="2"><subfield code="a">Neuropsychologie</subfield><subfield code="0">(DE-588)4135740-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Sakkade</subfield><subfield code="0">(DE-588)4178935-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2="1"><subfield code="a">Motorik</subfield><subfield code="0">(DE-588)4040385-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2="2"><subfield code="a">Sensorik</subfield><subfield code="g">Neurophysiologie</subfield><subfield code="0">(DE-588)4194931-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="3" ind2="0"><subfield code="a">Sakkade</subfield><subfield code="0">(DE-588)4178935-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="3" ind2="1"><subfield code="a">Neuropsychologie</subfield><subfield code="0">(DE-588)4135740-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="3" ind2=" "><subfield code="8">3\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="4" ind2="0"><subfield code="a">Arm</subfield><subfield code="0">(DE-588)4002931-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="4" ind2=" "><subfield code="8">4\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="5" ind2="0"><subfield code="a">Neuronales Netz</subfield><subfield code="0">(DE-588)4226127-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="5" ind2=" "><subfield code="8">5\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="6" ind2="0"><subfield code="a">Adaptives System</subfield><subfield code="0">(DE-588)4247928-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="6" ind2=" "><subfield code="8">6\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="7" ind2="0"><subfield code="a">Auge</subfield><subfield code="0">(DE-588)4122841-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="7" ind2=" "><subfield code="8">7\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="8" ind2="0"><subfield code="a">Bewegungskoordination</subfield><subfield code="0">(DE-588)4145145-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="8" ind2=" "><subfield code="8">8\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kuperstein, Michael</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HEBIS Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=001470858&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-001470858</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">3\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">4\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">5\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">6\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">7\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">8\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV002238048 |
illustrated | Not Illustrated |
indexdate | 2024-07-09T15:42:34Z |
institution | BVB |
isbn | 008036828X |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-001470858 |
oclc_num | 19066655 |
open_access_boolean | |
owner | DE-12 |
owner_facet | DE-12 |
physical | XVI, 443 S. |
publishDate | 1989 |
publishDateSearch | 1989 |
publishDateSort | 1989 |
publisher | Pergamon Pr. |
record_format | marc |
series2 | Neural networks, research and applications |
spelling | Grossberg, Stephen Verfasser aut Neural dynamics of adaptive sensory-motor control Stephen Grossberg ; Michael Kuperstein Expanded ed. New York u.a. Pergamon Pr. 1989 XVI, 443 S. txt rdacontent n rdamedia nc rdacarrier Neural networks, research and applications Neural networks (Neurobiology) Neuroophthalmology Saccadic eye movements Sensorimotor integration Neuropsychologie (DE-588)4135740-1 gnd rswk-swf Motorik (DE-588)4040385-3 gnd rswk-swf Bewegungskoordination (DE-588)4145145-4 gnd rswk-swf Sensomotorik (DE-588)4203593-4 gnd rswk-swf Arm (DE-588)4002931-1 gnd rswk-swf Sensorik Neurophysiologie (DE-588)4194931-6 gnd rswk-swf Adaptives System (DE-588)4247928-9 gnd rswk-swf Auge (DE-588)4122841-8 gnd rswk-swf Regelkreis (DE-588)4133165-5 gnd rswk-swf Neuronales Netz (DE-588)4226127-2 gnd rswk-swf Sakkade (DE-588)4178935-0 gnd rswk-swf Sakkade (DE-588)4178935-0 s Sensomotorik (DE-588)4203593-4 s DE-604 Regelkreis (DE-588)4133165-5 s Neuropsychologie (DE-588)4135740-1 s 1\p DE-604 Motorik (DE-588)4040385-3 s Sensorik Neurophysiologie (DE-588)4194931-6 s 2\p DE-604 3\p DE-604 Arm (DE-588)4002931-1 s 4\p DE-604 Neuronales Netz (DE-588)4226127-2 s 5\p DE-604 Adaptives System (DE-588)4247928-9 s 6\p DE-604 Auge (DE-588)4122841-8 s 7\p DE-604 Bewegungskoordination (DE-588)4145145-4 s 8\p DE-604 Kuperstein, Michael Verfasser aut HEBIS Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=001470858&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 3\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 4\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 5\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 6\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 7\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 8\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Grossberg, Stephen Kuperstein, Michael Neural dynamics of adaptive sensory-motor control Neural networks (Neurobiology) Neuroophthalmology Saccadic eye movements Sensorimotor integration Neuropsychologie (DE-588)4135740-1 gnd Motorik (DE-588)4040385-3 gnd Bewegungskoordination (DE-588)4145145-4 gnd Sensomotorik (DE-588)4203593-4 gnd Arm (DE-588)4002931-1 gnd Sensorik Neurophysiologie (DE-588)4194931-6 gnd Adaptives System (DE-588)4247928-9 gnd Auge (DE-588)4122841-8 gnd Regelkreis (DE-588)4133165-5 gnd Neuronales Netz (DE-588)4226127-2 gnd Sakkade (DE-588)4178935-0 gnd |
subject_GND | (DE-588)4135740-1 (DE-588)4040385-3 (DE-588)4145145-4 (DE-588)4203593-4 (DE-588)4002931-1 (DE-588)4194931-6 (DE-588)4247928-9 (DE-588)4122841-8 (DE-588)4133165-5 (DE-588)4226127-2 (DE-588)4178935-0 |
title | Neural dynamics of adaptive sensory-motor control |
title_auth | Neural dynamics of adaptive sensory-motor control |
title_exact_search | Neural dynamics of adaptive sensory-motor control |
title_full | Neural dynamics of adaptive sensory-motor control Stephen Grossberg ; Michael Kuperstein |
title_fullStr | Neural dynamics of adaptive sensory-motor control Stephen Grossberg ; Michael Kuperstein |
title_full_unstemmed | Neural dynamics of adaptive sensory-motor control Stephen Grossberg ; Michael Kuperstein |
title_short | Neural dynamics of adaptive sensory-motor control |
title_sort | neural dynamics of adaptive sensory motor control |
topic | Neural networks (Neurobiology) Neuroophthalmology Saccadic eye movements Sensorimotor integration Neuropsychologie (DE-588)4135740-1 gnd Motorik (DE-588)4040385-3 gnd Bewegungskoordination (DE-588)4145145-4 gnd Sensomotorik (DE-588)4203593-4 gnd Arm (DE-588)4002931-1 gnd Sensorik Neurophysiologie (DE-588)4194931-6 gnd Adaptives System (DE-588)4247928-9 gnd Auge (DE-588)4122841-8 gnd Regelkreis (DE-588)4133165-5 gnd Neuronales Netz (DE-588)4226127-2 gnd Sakkade (DE-588)4178935-0 gnd |
topic_facet | Neural networks (Neurobiology) Neuroophthalmology Saccadic eye movements Sensorimotor integration Neuropsychologie Motorik Bewegungskoordination Sensomotorik Arm Sensorik Neurophysiologie Adaptives System Auge Regelkreis Neuronales Netz Sakkade |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=001470858&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT grossbergstephen neuraldynamicsofadaptivesensorymotorcontrol AT kupersteinmichael neuraldynamicsofadaptivesensorymotorcontrol |