Lectures on representations of complex semi-simple Lie groups:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Berlin [u.a.]
Springer
1981
|
Schriftenreihe: | Tata Institute of Fundamental Research <Bombay>: Tata Institute of Fundamental Research lectures on mathematics and physics / Mathematics
66 |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | 91 S. |
ISBN: | 3540108297 0387108297 |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV002223784 | ||
003 | DE-604 | ||
005 | 20090427 | ||
007 | t | ||
008 | 890928s1981 |||| 00||| eng d | ||
020 | |a 3540108297 |9 3-540-10829-7 | ||
020 | |a 0387108297 |9 0-387-10829-7 | ||
035 | |a (OCoLC)8803643 | ||
035 | |a (DE-599)BVBBV002223784 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
049 | |a DE-91G |a DE-384 |a DE-703 |a DE-739 |a DE-355 |a DE-824 |a DE-29T |a DE-19 |a DE-706 |a DE-634 |a DE-83 |a DE-11 |a DE-188 | ||
050 | 0 | |a QA387 | |
082 | 1 | |a 512.55 |2 19 | |
082 | 0 | |a 510.4 |b T216l, v.66 | |
084 | |a SI 890 |0 (DE-625)143210: |2 rvk | ||
084 | |a SK 340 |0 (DE-625)143232: |2 rvk | ||
100 | 1 | |a Enright, Thomas J. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Lectures on representations of complex semi-simple Lie groups |c by Thomas J. Enright. Notes by Vyjayanthi Sundar |
264 | 1 | |a Berlin [u.a.] |b Springer |c 1981 | |
300 | |a 91 S. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Tata Institute of Fundamental Research <Bombay>: Tata Institute of Fundamental Research lectures on mathematics and physics / Mathematics |v 66 | |
650 | 4 | |a Cohomologie algèbre Lie | |
650 | 7 | |a Lie, groupes de |2 ram | |
650 | 7 | |a Lie-groepen |2 gtt | |
650 | 4 | |a Représentation groupe Lie semi-simple | |
650 | 7 | |a Représentations de groupes |2 ram | |
650 | 4 | |a Lie groups | |
650 | 4 | |a Representations of groups | |
650 | 0 | 7 | |a Lie-Gruppe |0 (DE-588)4035695-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Halbeinfache Lie-Gruppe |0 (DE-588)4122188-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Darstellungstheorie |0 (DE-588)4148816-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Darstellung |0 (DE-588)4200624-7 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Lie-Gruppe |0 (DE-588)4035695-4 |D s |
689 | 0 | 1 | |a Darstellung |0 (DE-588)4200624-7 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Halbeinfache Lie-Gruppe |0 (DE-588)4122188-6 |D s |
689 | 1 | 1 | |a Darstellungstheorie |0 (DE-588)4148816-7 |D s |
689 | 1 | |5 DE-604 | |
810 | 2 | |a Mathematics |t Tata Institute of Fundamental Research <Bombay>: Tata Institute of Fundamental Research lectures on mathematics and physics |v 66 |w (DE-604)BV000015654 |9 66 | |
856 | 4 | 2 | |m HBZ Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=001461233&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
940 | 1 | |q TUB-nveb | |
999 | |a oai:aleph.bib-bvb.de:BVB01-001461233 |
Datensatz im Suchindex
_version_ | 1804116678914605056 |
---|---|
adam_text | 1
Table of Contents
Section
1. Introduction and summary of results 2
2. The completion functors 15
3. Invariant pairings and forms 18
4. Lattices and the functor x 24
5. Translation functors 28
6. Construction of irreducible admissible (g ,l)~m°clules. ... 31
7. Resolutions of irreducible admissible (g,J) modules and
t multiplicity formulae 37
8. The principal series modules 43
9. The character formula for Z( ) 46
10. Determination of the irreducible admissible (g,t)
modules 53
11. An application to highest weight modules 59
12. Concepts from homological algebra 62
13. The category of admissible (g , 1 ) raodules 68
14. Preunitary pairings 75
15. Unitary representations and relative Lie algebra
cohomology 81
16. Connections with the derived functors introduced by
Zuckerraan 84
|
any_adam_object | 1 |
author | Enright, Thomas J. |
author_facet | Enright, Thomas J. |
author_role | aut |
author_sort | Enright, Thomas J. |
author_variant | t j e tj tje |
building | Verbundindex |
bvnumber | BV002223784 |
callnumber-first | Q - Science |
callnumber-label | QA387 |
callnumber-raw | QA387 |
callnumber-search | QA387 |
callnumber-sort | QA 3387 |
callnumber-subject | QA - Mathematics |
classification_rvk | SI 890 SK 340 |
ctrlnum | (OCoLC)8803643 (DE-599)BVBBV002223784 |
dewey-full | 512.55 510.4 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 512 - Algebra 510 - Mathematics |
dewey-raw | 512.55 510.4 |
dewey-search | 512.55 510.4 |
dewey-sort | 3512.55 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02482nam a2200577 cb4500</leader><controlfield tag="001">BV002223784</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20090427 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">890928s1981 |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3540108297</subfield><subfield code="9">3-540-10829-7</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0387108297</subfield><subfield code="9">0-387-10829-7</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)8803643</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV002223784</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91G</subfield><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-739</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-824</subfield><subfield code="a">DE-29T</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-706</subfield><subfield code="a">DE-634</subfield><subfield code="a">DE-83</subfield><subfield code="a">DE-11</subfield><subfield code="a">DE-188</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA387</subfield></datafield><datafield tag="082" ind1="1" ind2=" "><subfield code="a">512.55</subfield><subfield code="2">19</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">510.4</subfield><subfield code="b">T216l, v.66</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SI 890</subfield><subfield code="0">(DE-625)143210:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 340</subfield><subfield code="0">(DE-625)143232:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Enright, Thomas J.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Lectures on representations of complex semi-simple Lie groups</subfield><subfield code="c">by Thomas J. Enright. Notes by Vyjayanthi Sundar</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin [u.a.]</subfield><subfield code="b">Springer</subfield><subfield code="c">1981</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">91 S.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Tata Institute of Fundamental Research <Bombay>: Tata Institute of Fundamental Research lectures on mathematics and physics / Mathematics</subfield><subfield code="v">66</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cohomologie algèbre Lie</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Lie, groupes de</subfield><subfield code="2">ram</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Lie-groepen</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Représentation groupe Lie semi-simple</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Représentations de groupes</subfield><subfield code="2">ram</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Lie groups</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Representations of groups</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Lie-Gruppe</subfield><subfield code="0">(DE-588)4035695-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Halbeinfache Lie-Gruppe</subfield><subfield code="0">(DE-588)4122188-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Darstellungstheorie</subfield><subfield code="0">(DE-588)4148816-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Darstellung</subfield><subfield code="0">(DE-588)4200624-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Lie-Gruppe</subfield><subfield code="0">(DE-588)4035695-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Darstellung</subfield><subfield code="0">(DE-588)4200624-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Halbeinfache Lie-Gruppe</subfield><subfield code="0">(DE-588)4122188-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Darstellungstheorie</subfield><subfield code="0">(DE-588)4148816-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="810" ind1="2" ind2=" "><subfield code="a">Mathematics</subfield><subfield code="t">Tata Institute of Fundamental Research <Bombay>: Tata Institute of Fundamental Research lectures on mathematics and physics</subfield><subfield code="v">66</subfield><subfield code="w">(DE-604)BV000015654</subfield><subfield code="9">66</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HBZ Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=001461233&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">TUB-nveb</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-001461233</subfield></datafield></record></collection> |
id | DE-604.BV002223784 |
illustrated | Not Illustrated |
indexdate | 2024-07-09T15:42:20Z |
institution | BVB |
isbn | 3540108297 0387108297 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-001461233 |
oclc_num | 8803643 |
open_access_boolean | |
owner | DE-91G DE-BY-TUM DE-384 DE-703 DE-739 DE-355 DE-BY-UBR DE-824 DE-29T DE-19 DE-BY-UBM DE-706 DE-634 DE-83 DE-11 DE-188 |
owner_facet | DE-91G DE-BY-TUM DE-384 DE-703 DE-739 DE-355 DE-BY-UBR DE-824 DE-29T DE-19 DE-BY-UBM DE-706 DE-634 DE-83 DE-11 DE-188 |
physical | 91 S. |
psigel | TUB-nveb |
publishDate | 1981 |
publishDateSearch | 1981 |
publishDateSort | 1981 |
publisher | Springer |
record_format | marc |
series2 | Tata Institute of Fundamental Research <Bombay>: Tata Institute of Fundamental Research lectures on mathematics and physics / Mathematics |
spelling | Enright, Thomas J. Verfasser aut Lectures on representations of complex semi-simple Lie groups by Thomas J. Enright. Notes by Vyjayanthi Sundar Berlin [u.a.] Springer 1981 91 S. txt rdacontent n rdamedia nc rdacarrier Tata Institute of Fundamental Research <Bombay>: Tata Institute of Fundamental Research lectures on mathematics and physics / Mathematics 66 Cohomologie algèbre Lie Lie, groupes de ram Lie-groepen gtt Représentation groupe Lie semi-simple Représentations de groupes ram Lie groups Representations of groups Lie-Gruppe (DE-588)4035695-4 gnd rswk-swf Halbeinfache Lie-Gruppe (DE-588)4122188-6 gnd rswk-swf Darstellungstheorie (DE-588)4148816-7 gnd rswk-swf Darstellung (DE-588)4200624-7 gnd rswk-swf Lie-Gruppe (DE-588)4035695-4 s Darstellung (DE-588)4200624-7 s DE-604 Halbeinfache Lie-Gruppe (DE-588)4122188-6 s Darstellungstheorie (DE-588)4148816-7 s Mathematics Tata Institute of Fundamental Research <Bombay>: Tata Institute of Fundamental Research lectures on mathematics and physics 66 (DE-604)BV000015654 66 HBZ Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=001461233&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Enright, Thomas J. Lectures on representations of complex semi-simple Lie groups Cohomologie algèbre Lie Lie, groupes de ram Lie-groepen gtt Représentation groupe Lie semi-simple Représentations de groupes ram Lie groups Representations of groups Lie-Gruppe (DE-588)4035695-4 gnd Halbeinfache Lie-Gruppe (DE-588)4122188-6 gnd Darstellungstheorie (DE-588)4148816-7 gnd Darstellung (DE-588)4200624-7 gnd |
subject_GND | (DE-588)4035695-4 (DE-588)4122188-6 (DE-588)4148816-7 (DE-588)4200624-7 |
title | Lectures on representations of complex semi-simple Lie groups |
title_auth | Lectures on representations of complex semi-simple Lie groups |
title_exact_search | Lectures on representations of complex semi-simple Lie groups |
title_full | Lectures on representations of complex semi-simple Lie groups by Thomas J. Enright. Notes by Vyjayanthi Sundar |
title_fullStr | Lectures on representations of complex semi-simple Lie groups by Thomas J. Enright. Notes by Vyjayanthi Sundar |
title_full_unstemmed | Lectures on representations of complex semi-simple Lie groups by Thomas J. Enright. Notes by Vyjayanthi Sundar |
title_short | Lectures on representations of complex semi-simple Lie groups |
title_sort | lectures on representations of complex semi simple lie groups |
topic | Cohomologie algèbre Lie Lie, groupes de ram Lie-groepen gtt Représentation groupe Lie semi-simple Représentations de groupes ram Lie groups Representations of groups Lie-Gruppe (DE-588)4035695-4 gnd Halbeinfache Lie-Gruppe (DE-588)4122188-6 gnd Darstellungstheorie (DE-588)4148816-7 gnd Darstellung (DE-588)4200624-7 gnd |
topic_facet | Cohomologie algèbre Lie Lie, groupes de Lie-groepen Représentation groupe Lie semi-simple Représentations de groupes Lie groups Representations of groups Lie-Gruppe Halbeinfache Lie-Gruppe Darstellungstheorie Darstellung |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=001461233&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
volume_link | (DE-604)BV000015654 |
work_keys_str_mv | AT enrightthomasj lecturesonrepresentationsofcomplexsemisimpleliegroups |