Asymptotic prime divisors:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Berlin [u.a.]
Springer
1983
|
Schriftenreihe: | Lecture notes in mathematics
1023 |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | IX, 118 S. |
ISBN: | 3540127224 0387127224 |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV002099261 | ||
003 | DE-604 | ||
005 | 20080313 | ||
007 | t | ||
008 | 890928s1983 |||| 00||| eng d | ||
020 | |a 3540127224 |9 3-540-12722-4 | ||
020 | |a 0387127224 |9 0-387-12722-4 | ||
035 | |a (OCoLC)10208499 | ||
035 | |a (DE-599)BVBBV002099261 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
049 | |a DE-91G |a DE-384 |a DE-355 |a DE-20 |a DE-824 |a DE-29T |a DE-19 |a DE-706 |a DE-83 |a DE-11 |a DE-188 |a DE-12 | ||
050 | 0 | |a QA3 | |
082 | 0 | |a 512/.4 |2 19 | |
082 | 0 | |a 510 |2 19 | |
084 | |a SI 850 |0 (DE-625)143199: |2 rvk | ||
084 | |a MAT 129f |2 stub | ||
084 | |a MAT 142f |2 stub | ||
100 | 1 | |a MacAdam, Stephen |e Verfasser |4 aut | |
245 | 1 | 0 | |a Asymptotic prime divisors |c Stephen McAdam |
264 | 1 | |a Berlin [u.a.] |b Springer |c 1983 | |
300 | |a IX, 118 S. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Lecture notes in mathematics |v 1023 | |
650 | 4 | |a Anneaux commutatifs | |
650 | 4 | |a Anneaux noethériens | |
650 | 4 | |a Commutative rings | |
650 | 4 | |a Ideals (Algebra) | |
650 | 4 | |a Noetherian rings | |
650 | 4 | |a Sequences (Mathematics) | |
650 | 0 | 7 | |a Primdivisor |0 (DE-588)4175703-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Divisor |0 (DE-588)4150324-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Noetherscher Ring |0 (DE-588)4171970-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Asymptotischer Primdivisor |0 (DE-588)4418968-0 |2 gnd |9 rswk-swf |
655 | 7 | |a Hilbert-Polynom |2 gnd |9 rswk-swf | |
689 | 0 | 0 | |a Asymptotischer Primdivisor |0 (DE-588)4418968-0 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Noetherscher Ring |0 (DE-588)4171970-0 |D s |
689 | 1 | 1 | |a Divisor |0 (DE-588)4150324-7 |D s |
689 | 1 | |5 DE-604 | |
689 | 2 | 0 | |a Noetherscher Ring |0 (DE-588)4171970-0 |D s |
689 | 2 | 1 | |a Hilbert-Polynom |A f |
689 | 2 | |5 DE-604 | |
689 | 3 | 0 | |a Primdivisor |0 (DE-588)4175703-8 |D s |
689 | 3 | 1 | |a Noetherscher Ring |0 (DE-588)4171970-0 |D s |
689 | 3 | |5 DE-604 | |
830 | 0 | |a Lecture notes in mathematics |v 1023 |w (DE-604)BV000676446 |9 1023 | |
856 | 4 | 2 | |m HBZ Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=001376071&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
940 | 1 | |q TUB-nveb | |
999 | |a oai:aleph.bib-bvb.de:BVB01-001376071 |
Datensatz im Suchindex
_version_ | 1804116552391327744 |
---|---|
adam_text | TABLE OF CONTENTS
Page
INTRODUCTION VIII
CHAPTER I: A*(I) and B*(I) 1
CHAPTER II: A*(I) B*(I) 8
CHAPTER III: A*(I) 12
CHAPTER IV: A Characterization of A*(I) 26
CHAPTER V: Asymptotic Sequences 32
CHAPTER VI: Asymptotic Sequences Over Ideals 42
CHAPTER VII: Asymptotic Grade 55
CHAPTER VIII: When A = A 61
CHAPTER DC: Conforming Relations 68
CHAPTER X: Ideal Transforms 76
CHAPTER XI: Miscellaneous 89
APPENDIX: Chain Conditions 110
REFERENCES 113
LIST OF NOTATION l16
INDEX 117
|
any_adam_object | 1 |
author | MacAdam, Stephen |
author_facet | MacAdam, Stephen |
author_role | aut |
author_sort | MacAdam, Stephen |
author_variant | s m sm |
building | Verbundindex |
bvnumber | BV002099261 |
callnumber-first | Q - Science |
callnumber-label | QA3 |
callnumber-raw | QA3 |
callnumber-search | QA3 |
callnumber-sort | QA 13 |
callnumber-subject | QA - Mathematics |
classification_rvk | SI 850 |
classification_tum | MAT 129f MAT 142f |
ctrlnum | (OCoLC)10208499 (DE-599)BVBBV002099261 |
dewey-full | 512/.4 510 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 512 - Algebra 510 - Mathematics |
dewey-raw | 512/.4 510 |
dewey-search | 512/.4 510 |
dewey-sort | 3512 14 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02364nam a2200649 cb4500</leader><controlfield tag="001">BV002099261</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20080313 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">890928s1983 |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3540127224</subfield><subfield code="9">3-540-12722-4</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0387127224</subfield><subfield code="9">0-387-12722-4</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)10208499</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV002099261</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91G</subfield><subfield code="a">DE-384</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-824</subfield><subfield code="a">DE-29T</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-706</subfield><subfield code="a">DE-83</subfield><subfield code="a">DE-11</subfield><subfield code="a">DE-188</subfield><subfield code="a">DE-12</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA3</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">512/.4</subfield><subfield code="2">19</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">510</subfield><subfield code="2">19</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SI 850</subfield><subfield code="0">(DE-625)143199:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 129f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 142f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">MacAdam, Stephen</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Asymptotic prime divisors</subfield><subfield code="c">Stephen McAdam</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin [u.a.]</subfield><subfield code="b">Springer</subfield><subfield code="c">1983</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">IX, 118 S.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Lecture notes in mathematics</subfield><subfield code="v">1023</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Anneaux commutatifs</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Anneaux noethériens</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Commutative rings</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ideals (Algebra)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Noetherian rings</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Sequences (Mathematics)</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Primdivisor</subfield><subfield code="0">(DE-588)4175703-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Divisor</subfield><subfield code="0">(DE-588)4150324-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Noetherscher Ring</subfield><subfield code="0">(DE-588)4171970-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Asymptotischer Primdivisor</subfield><subfield code="0">(DE-588)4418968-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="a">Hilbert-Polynom</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Asymptotischer Primdivisor</subfield><subfield code="0">(DE-588)4418968-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Noetherscher Ring</subfield><subfield code="0">(DE-588)4171970-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Divisor</subfield><subfield code="0">(DE-588)4150324-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Noetherscher Ring</subfield><subfield code="0">(DE-588)4171970-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2="1"><subfield code="a">Hilbert-Polynom</subfield><subfield code="A">f</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="3" ind2="0"><subfield code="a">Primdivisor</subfield><subfield code="0">(DE-588)4175703-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="3" ind2="1"><subfield code="a">Noetherscher Ring</subfield><subfield code="0">(DE-588)4171970-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="3" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Lecture notes in mathematics</subfield><subfield code="v">1023</subfield><subfield code="w">(DE-604)BV000676446</subfield><subfield code="9">1023</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HBZ Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=001376071&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">TUB-nveb</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-001376071</subfield></datafield></record></collection> |
genre | Hilbert-Polynom gnd |
genre_facet | Hilbert-Polynom |
id | DE-604.BV002099261 |
illustrated | Not Illustrated |
indexdate | 2024-07-09T15:40:19Z |
institution | BVB |
isbn | 3540127224 0387127224 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-001376071 |
oclc_num | 10208499 |
open_access_boolean | |
owner | DE-91G DE-BY-TUM DE-384 DE-355 DE-BY-UBR DE-20 DE-824 DE-29T DE-19 DE-BY-UBM DE-706 DE-83 DE-11 DE-188 DE-12 |
owner_facet | DE-91G DE-BY-TUM DE-384 DE-355 DE-BY-UBR DE-20 DE-824 DE-29T DE-19 DE-BY-UBM DE-706 DE-83 DE-11 DE-188 DE-12 |
physical | IX, 118 S. |
psigel | TUB-nveb |
publishDate | 1983 |
publishDateSearch | 1983 |
publishDateSort | 1983 |
publisher | Springer |
record_format | marc |
series | Lecture notes in mathematics |
series2 | Lecture notes in mathematics |
spelling | MacAdam, Stephen Verfasser aut Asymptotic prime divisors Stephen McAdam Berlin [u.a.] Springer 1983 IX, 118 S. txt rdacontent n rdamedia nc rdacarrier Lecture notes in mathematics 1023 Anneaux commutatifs Anneaux noethériens Commutative rings Ideals (Algebra) Noetherian rings Sequences (Mathematics) Primdivisor (DE-588)4175703-8 gnd rswk-swf Divisor (DE-588)4150324-7 gnd rswk-swf Noetherscher Ring (DE-588)4171970-0 gnd rswk-swf Asymptotischer Primdivisor (DE-588)4418968-0 gnd rswk-swf Hilbert-Polynom gnd rswk-swf Asymptotischer Primdivisor (DE-588)4418968-0 s DE-604 Noetherscher Ring (DE-588)4171970-0 s Divisor (DE-588)4150324-7 s Hilbert-Polynom f Primdivisor (DE-588)4175703-8 s Lecture notes in mathematics 1023 (DE-604)BV000676446 1023 HBZ Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=001376071&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | MacAdam, Stephen Asymptotic prime divisors Lecture notes in mathematics Anneaux commutatifs Anneaux noethériens Commutative rings Ideals (Algebra) Noetherian rings Sequences (Mathematics) Primdivisor (DE-588)4175703-8 gnd Divisor (DE-588)4150324-7 gnd Noetherscher Ring (DE-588)4171970-0 gnd Asymptotischer Primdivisor (DE-588)4418968-0 gnd |
subject_GND | (DE-588)4175703-8 (DE-588)4150324-7 (DE-588)4171970-0 (DE-588)4418968-0 |
title | Asymptotic prime divisors |
title_auth | Asymptotic prime divisors |
title_exact_search | Asymptotic prime divisors |
title_full | Asymptotic prime divisors Stephen McAdam |
title_fullStr | Asymptotic prime divisors Stephen McAdam |
title_full_unstemmed | Asymptotic prime divisors Stephen McAdam |
title_short | Asymptotic prime divisors |
title_sort | asymptotic prime divisors |
topic | Anneaux commutatifs Anneaux noethériens Commutative rings Ideals (Algebra) Noetherian rings Sequences (Mathematics) Primdivisor (DE-588)4175703-8 gnd Divisor (DE-588)4150324-7 gnd Noetherscher Ring (DE-588)4171970-0 gnd Asymptotischer Primdivisor (DE-588)4418968-0 gnd |
topic_facet | Anneaux commutatifs Anneaux noethériens Commutative rings Ideals (Algebra) Noetherian rings Sequences (Mathematics) Primdivisor Divisor Noetherscher Ring Asymptotischer Primdivisor Hilbert-Polynom |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=001376071&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
volume_link | (DE-604)BV000676446 |
work_keys_str_mv | AT macadamstephen asymptoticprimedivisors |